{"title":"基于遗传算法的元启发式元胞制造系统调度问题建模","authors":"Amin Rezaeipanah, Musa Mojarad","doi":"10.37965/jait.2021.0018","DOIUrl":null,"url":null,"abstract":"This paper presents a new, bi-criteria mixed-integer programming model for scheduling cells and pieces within each cell in a manufacturing cellular system. The objective of this model is to minimize the makespan and inter-cell movements simultaneously, while considering sequence-dependent cell setup times. In the CMS design and planning, three main steps must be considered, namely cell formation (i.e., piece families and machine grouping), inter and intra-cell layouts, and scheduling issue. Due to the fact that the Cellular Manufacturing Systems (CMS) problem is NP-Hard, a Genetic Algorithm (GA) as an efficient meta-heuristic method is proposed to solve such a hard problem. Finally, a number of test problems are solved to show the efficiency of the proposed GA and the related computational results are compared with the results obtained by the use of an optimization tool.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Modeling the Scheduling Problem in Cellular Manufacturing Systems Using Genetic Algorithm as an Efficient Meta-Heuristic Approach\",\"authors\":\"Amin Rezaeipanah, Musa Mojarad\",\"doi\":\"10.37965/jait.2021.0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new, bi-criteria mixed-integer programming model for scheduling cells and pieces within each cell in a manufacturing cellular system. The objective of this model is to minimize the makespan and inter-cell movements simultaneously, while considering sequence-dependent cell setup times. In the CMS design and planning, three main steps must be considered, namely cell formation (i.e., piece families and machine grouping), inter and intra-cell layouts, and scheduling issue. Due to the fact that the Cellular Manufacturing Systems (CMS) problem is NP-Hard, a Genetic Algorithm (GA) as an efficient meta-heuristic method is proposed to solve such a hard problem. Finally, a number of test problems are solved to show the efficiency of the proposed GA and the related computational results are compared with the results obtained by the use of an optimization tool.\",\"PeriodicalId\":70996,\"journal\":{\"name\":\"人工智能技术学报(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"人工智能技术学报(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.37965/jait.2021.0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2021.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling the Scheduling Problem in Cellular Manufacturing Systems Using Genetic Algorithm as an Efficient Meta-Heuristic Approach
This paper presents a new, bi-criteria mixed-integer programming model for scheduling cells and pieces within each cell in a manufacturing cellular system. The objective of this model is to minimize the makespan and inter-cell movements simultaneously, while considering sequence-dependent cell setup times. In the CMS design and planning, three main steps must be considered, namely cell formation (i.e., piece families and machine grouping), inter and intra-cell layouts, and scheduling issue. Due to the fact that the Cellular Manufacturing Systems (CMS) problem is NP-Hard, a Genetic Algorithm (GA) as an efficient meta-heuristic method is proposed to solve such a hard problem. Finally, a number of test problems are solved to show the efficiency of the proposed GA and the related computational results are compared with the results obtained by the use of an optimization tool.