局部平稳乘性波动率模型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Christopher Walsh, M. Vogt
{"title":"局部平稳乘性波动率模型","authors":"Christopher Walsh, M. Vogt","doi":"10.1080/07350015.2022.2036612","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study a semiparametric multiplicative volatility model, which splits up into a nonparametric part and a parametric GARCH component. The nonparametric part is modeled as a product of a deterministic time trend component and of further components that depend on stochastic regressors. We propose a two-step procedure to estimate the model. To estimate the nonparametric components, we transform the model and apply a backfitting procedure. The GARCH parameters are estimated in a second step via quasi maximum likelihood. We show consistency and asymptotic normality of our estimators. Our results are obtained using mixing properties and local stationarity. We illustrate our method using financial data. Finally, a small simulation study illustrates a substantial bias in the GARCH parameter estimates when omitting the stochastic regressors.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Locally Stationary Multiplicative Volatility Modeling\",\"authors\":\"Christopher Walsh, M. Vogt\",\"doi\":\"10.1080/07350015.2022.2036612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study a semiparametric multiplicative volatility model, which splits up into a nonparametric part and a parametric GARCH component. The nonparametric part is modeled as a product of a deterministic time trend component and of further components that depend on stochastic regressors. We propose a two-step procedure to estimate the model. To estimate the nonparametric components, we transform the model and apply a backfitting procedure. The GARCH parameters are estimated in a second step via quasi maximum likelihood. We show consistency and asymptotic normality of our estimators. Our results are obtained using mixing properties and local stationarity. We illustrate our method using financial data. Finally, a small simulation study illustrates a substantial bias in the GARCH parameter estimates when omitting the stochastic regressors.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2036612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2036612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要在本文中,我们研究了一个半参数乘性波动率模型,该模型分为非参数部分和参数GARCH分量。非参数部分被建模为确定性时间趋势分量和依赖于随机回归的其他分量的乘积。我们提出了一个两步程序来估计模型。为了估计非参数分量,我们对模型进行了变换,并应用了反拟合过程。GARCH参数在第二步骤中通过准最大似然来估计。我们给出了估计量的一致性和渐近正态性。我们的结果是利用混合性质和局部平稳性得到的。我们用财务数据来说明我们的方法。最后,一项小型模拟研究表明,当省略随机回归时,GARCH参数估计存在显著偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locally Stationary Multiplicative Volatility Modeling
Abstract In this article, we study a semiparametric multiplicative volatility model, which splits up into a nonparametric part and a parametric GARCH component. The nonparametric part is modeled as a product of a deterministic time trend component and of further components that depend on stochastic regressors. We propose a two-step procedure to estimate the model. To estimate the nonparametric components, we transform the model and apply a backfitting procedure. The GARCH parameters are estimated in a second step via quasi maximum likelihood. We show consistency and asymptotic normality of our estimators. Our results are obtained using mixing properties and local stationarity. We illustrate our method using financial data. Finally, a small simulation study illustrates a substantial bias in the GARCH parameter estimates when omitting the stochastic regressors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信