超声波加工对乳基软质盐水奶酪理化性质的影响

Q4 Environmental Science
A. Kadi, U. Bagale, I. Potoroko
{"title":"超声波加工对乳基软质盐水奶酪理化性质的影响","authors":"A. Kadi, U. Bagale, I. Potoroko","doi":"10.22146/ijbiotech.73930","DOIUrl":null,"url":null,"abstract":"Many earlier studies have documented pasteurization problems in the dairy industry. As a result, ultrasonic processing has been researched as a non‐heat alternative to pasteurization. In this study, milk‐based soft cheese was treated using various sonication times (0, 1, and 3 min) at a set frequency (22 kHz) with an amplitude of 60% of 630 W and different ripening periods (0, 15, 30, and 60 days) in brine (15%), stored at 4 °C, to reduce heat treatment and increase yield. The physicochemical parameters of white cheeses were examined over next 60 days and compared with a control cheese. The result showed that ultrasound had no significant effect on the cheeses in terms of their fat and protein content on storage. Compared to the control sample, ultrasound treatment improved the taste and aroma ratings due to increased lipolysis and proteolysis. In terms of overall acceptability, the ultra‐filtrate cheese sonicated for 3 min received the highest marks compared to the control. Sonication for 3 min treated fresh milk showed the maximum yield (190.5 g/L milk) compared to untreated raw milk yields (150.32 g/L).","PeriodicalId":13452,"journal":{"name":"Indonesian Journal of Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The effect of ultrasonic processing on physical and chemical properties of milk‐based soft, brine cheese\",\"authors\":\"A. Kadi, U. Bagale, I. Potoroko\",\"doi\":\"10.22146/ijbiotech.73930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many earlier studies have documented pasteurization problems in the dairy industry. As a result, ultrasonic processing has been researched as a non‐heat alternative to pasteurization. In this study, milk‐based soft cheese was treated using various sonication times (0, 1, and 3 min) at a set frequency (22 kHz) with an amplitude of 60% of 630 W and different ripening periods (0, 15, 30, and 60 days) in brine (15%), stored at 4 °C, to reduce heat treatment and increase yield. The physicochemical parameters of white cheeses were examined over next 60 days and compared with a control cheese. The result showed that ultrasound had no significant effect on the cheeses in terms of their fat and protein content on storage. Compared to the control sample, ultrasound treatment improved the taste and aroma ratings due to increased lipolysis and proteolysis. In terms of overall acceptability, the ultra‐filtrate cheese sonicated for 3 min received the highest marks compared to the control. Sonication for 3 min treated fresh milk showed the maximum yield (190.5 g/L milk) compared to untreated raw milk yields (150.32 g/L).\",\"PeriodicalId\":13452,\"journal\":{\"name\":\"Indonesian Journal of Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijbiotech.73930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijbiotech.73930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

许多早期的研究记录了乳制品行业的巴氏灭菌问题。因此,超声波处理已被研究作为一种非热替代巴氏灭菌。在这项研究中,以牛奶为基础的软奶酪在设定的频率(22 kHz)下(振幅为630 W的60%)使用不同的超声时间(0,1和3分钟)和不同的成熟时间(0,15,30和60天)在盐水(15%)中进行处理,并在4°C下储存,以减少热处理并提高产量。在接下来的60天里,研究了白奶酪的理化参数,并与对照奶酪进行了比较。结果表明,超声波对奶酪的脂肪和蛋白质含量在储存过程中没有显著影响。与对照样品相比,超声处理由于增加了脂肪分解和蛋白质分解,改善了味道和香气等级。就整体可接受性而言,与对照组相比,超声波处理3分钟的超滤奶酪获得了最高分。与未经处理的原料奶产量(150.32 g/L)相比,处理过的鲜奶超声处理3分钟的产量最高(190.5 g/L牛奶)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of ultrasonic processing on physical and chemical properties of milk‐based soft, brine cheese
Many earlier studies have documented pasteurization problems in the dairy industry. As a result, ultrasonic processing has been researched as a non‐heat alternative to pasteurization. In this study, milk‐based soft cheese was treated using various sonication times (0, 1, and 3 min) at a set frequency (22 kHz) with an amplitude of 60% of 630 W and different ripening periods (0, 15, 30, and 60 days) in brine (15%), stored at 4 °C, to reduce heat treatment and increase yield. The physicochemical parameters of white cheeses were examined over next 60 days and compared with a control cheese. The result showed that ultrasound had no significant effect on the cheeses in terms of their fat and protein content on storage. Compared to the control sample, ultrasound treatment improved the taste and aroma ratings due to increased lipolysis and proteolysis. In terms of overall acceptability, the ultra‐filtrate cheese sonicated for 3 min received the highest marks compared to the control. Sonication for 3 min treated fresh milk showed the maximum yield (190.5 g/L milk) compared to untreated raw milk yields (150.32 g/L).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Biotechnology
Indonesian Journal of Biotechnology Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.00
自引率
0.00%
发文量
20
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信