Yehong Liu, Dong Dai, C. Tang, Xin Wang, Shumao Wang
{"title":"利用关联规则挖掘判别联合收割机进给率","authors":"Yehong Liu, Dong Dai, C. Tang, Xin Wang, Shumao Wang","doi":"10.5755/j02.eie.33859","DOIUrl":null,"url":null,"abstract":"The feed rate is an important evaluation index of combine harvester performance. The quick identification of the amount of feed rate that enters the combine during harvesting is of great significance for the efficiency and operational quality of the combine harvester. To address this issue, this study proposes a feed rate discrimination method based on association rule mining. A self-designed data acquisition system was designed, taking the wheat combine harvester as object, and collected seven speed signals and three torque signals when the feed rate was 6 kg/s~8 kg/s, 8 kg/s~10 kg/s, and 10 kg/s~11 kg/s, respectively. The collected time series data were discretized so as to facilitate the construction of transaction sets. Then, the association rules in the constructed transaction set were mined by FP-Growth, and the rules with weak or no correlation with the increase in feed rate were filtered using min-support, min-confidence, and min-lift of 1.3, 0.8, and 3, respectively, to obtain strong association rules. Then, the strong association rules were constructed as classifiers. The test results showed that the accuracy of the constructed classifier for the identification of 6 kg/s~8 kg/s, 8 kg/s~10 kg/s, and 10 kg/s~11 kg/s feed rates was 100 %, 96 %, and 98.7 %, respectively. Research results can provide a basis for the adjustment of the working state of the combine harvester.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminating Feed Rate of Combine Harvester by Using Association Rule Mining\",\"authors\":\"Yehong Liu, Dong Dai, C. Tang, Xin Wang, Shumao Wang\",\"doi\":\"10.5755/j02.eie.33859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The feed rate is an important evaluation index of combine harvester performance. The quick identification of the amount of feed rate that enters the combine during harvesting is of great significance for the efficiency and operational quality of the combine harvester. To address this issue, this study proposes a feed rate discrimination method based on association rule mining. A self-designed data acquisition system was designed, taking the wheat combine harvester as object, and collected seven speed signals and three torque signals when the feed rate was 6 kg/s~8 kg/s, 8 kg/s~10 kg/s, and 10 kg/s~11 kg/s, respectively. The collected time series data were discretized so as to facilitate the construction of transaction sets. Then, the association rules in the constructed transaction set were mined by FP-Growth, and the rules with weak or no correlation with the increase in feed rate were filtered using min-support, min-confidence, and min-lift of 1.3, 0.8, and 3, respectively, to obtain strong association rules. Then, the strong association rules were constructed as classifiers. The test results showed that the accuracy of the constructed classifier for the identification of 6 kg/s~8 kg/s, 8 kg/s~10 kg/s, and 10 kg/s~11 kg/s feed rates was 100 %, 96 %, and 98.7 %, respectively. Research results can provide a basis for the adjustment of the working state of the combine harvester.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.33859\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.33859","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Discriminating Feed Rate of Combine Harvester by Using Association Rule Mining
The feed rate is an important evaluation index of combine harvester performance. The quick identification of the amount of feed rate that enters the combine during harvesting is of great significance for the efficiency and operational quality of the combine harvester. To address this issue, this study proposes a feed rate discrimination method based on association rule mining. A self-designed data acquisition system was designed, taking the wheat combine harvester as object, and collected seven speed signals and three torque signals when the feed rate was 6 kg/s~8 kg/s, 8 kg/s~10 kg/s, and 10 kg/s~11 kg/s, respectively. The collected time series data were discretized so as to facilitate the construction of transaction sets. Then, the association rules in the constructed transaction set were mined by FP-Growth, and the rules with weak or no correlation with the increase in feed rate were filtered using min-support, min-confidence, and min-lift of 1.3, 0.8, and 3, respectively, to obtain strong association rules. Then, the strong association rules were constructed as classifiers. The test results showed that the accuracy of the constructed classifier for the identification of 6 kg/s~8 kg/s, 8 kg/s~10 kg/s, and 10 kg/s~11 kg/s feed rates was 100 %, 96 %, and 98.7 %, respectively. Research results can provide a basis for the adjustment of the working state of the combine harvester.
期刊介绍:
The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible.
The journal publishes regular papers dealing with the following areas, but not limited to:
Electronics;
Electronic Measurements;
Signal Technology;
Microelectronics;
High Frequency Technology, Microwaves.
Electrical Engineering;
Renewable Energy;
Automation, Robotics;
Telecommunications Engineering.