平面流体流动的非唯一性

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
H. Gimperlein, M. Grinfeld, R. Knops, M. Slemrod
{"title":"平面流体流动的非唯一性","authors":"H. Gimperlein, M. Grinfeld, R. Knops, M. Slemrod","doi":"10.1090/qam/1670","DOIUrl":null,"url":null,"abstract":"Examples of dynamical systems proposed by Z. Artstein and C. M. Dafermos admit non-unique solutions that track a one parameter family of closed circular orbits contiguous at a single point. Switching between orbits at this single point produces an infinite number of solutions with the same initial data. Dafermos appeals to a maximal entropy rate criterion to recover uniqueness.\n\nThese results are here interpreted as non-unique Lagrange trajectories on a particular spatial region. The corresponding special velocity is proved consistent with plane steady compressible fluid flows that for specified pressure and mass density satisfy not only the Euler equations but also the Navier-Stokes equations for specially chosen volume and (positive) shear viscosities. The maximal entropy rate criterion recovers uniqueness.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-uniqueness in plane fluid flows\",\"authors\":\"H. Gimperlein, M. Grinfeld, R. Knops, M. Slemrod\",\"doi\":\"10.1090/qam/1670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Examples of dynamical systems proposed by Z. Artstein and C. M. Dafermos admit non-unique solutions that track a one parameter family of closed circular orbits contiguous at a single point. Switching between orbits at this single point produces an infinite number of solutions with the same initial data. Dafermos appeals to a maximal entropy rate criterion to recover uniqueness.\\n\\nThese results are here interpreted as non-unique Lagrange trajectories on a particular spatial region. The corresponding special velocity is proved consistent with plane steady compressible fluid flows that for specified pressure and mass density satisfy not only the Euler equations but also the Navier-Stokes equations for specially chosen volume and (positive) shear viscosities. The maximal entropy rate criterion recovers uniqueness.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1670\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1670","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Z.Artstein和C.M.Dafermos提出的动力学系统的例子承认了跟踪在单个点连续的闭合圆形轨道的单参数族的非唯一解。在这一点上在轨道之间切换会产生具有相同初始数据的无限多个解决方案。Dafermos呼吁使用最大熵率准则来恢复唯一性。这些结果在这里被解释为特定空间区域上的非唯一拉格朗日轨迹。证明了相应的特殊速度与平面稳定可压缩流体流一致,对于特定的压力和质量密度,不仅满足Euler方程,而且满足Navier-Stokes方程,对于特定选择的体积和(正)剪切粘度。最大熵率准则恢复了唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-uniqueness in plane fluid flows
Examples of dynamical systems proposed by Z. Artstein and C. M. Dafermos admit non-unique solutions that track a one parameter family of closed circular orbits contiguous at a single point. Switching between orbits at this single point produces an infinite number of solutions with the same initial data. Dafermos appeals to a maximal entropy rate criterion to recover uniqueness. These results are here interpreted as non-unique Lagrange trajectories on a particular spatial region. The corresponding special velocity is proved consistent with plane steady compressible fluid flows that for specified pressure and mass density satisfy not only the Euler equations but also the Navier-Stokes equations for specially chosen volume and (positive) shear viscosities. The maximal entropy rate criterion recovers uniqueness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信