{"title":"聚偏氟乙烯/磁铁矿纳米复合材料:结构、热性能和机械性能的制备和研究","authors":"Zoulikha Khiati, L. Mrah","doi":"10.1515/ipp-2022-4302","DOIUrl":null,"url":null,"abstract":"Abstract An in-depth study of polyvinylidene fluoride (PVDF) based nanocomposite systems will be the focus of this research. This polymer being hydrophobic and apolar, it will be unlikely to generate strong interactions with clay leaves called organophilic maghnite. The challenge of this study will therefore be to manage the load/polymer interfaces by using montmorillonite with specific surface treatments by adding a surfactant Cetyltrimethylammonium bromide. Therefore, a significant improvement in mechanical and thermal properties was observed. The properties of PVDFNC nanocomposites were evaluated using various physico-chemical techniques (XRD, FTIR, TGA, DSC, TEM, SEM). The results of the structural and thermal measurements carried out on these products reveal that the structural concept of the surfactant influences both the morphological profile, the thermal and mechanical properties of the nanocomposites obtained. Accelerated crystallization is observed in PVDNC nanocomposites as an effective nucleation agent, the crystals formed are predominantly β shaped and have a small number of polar α crystals. Measurements by X-ray diffraction, as well as transmission and scanning electron microscopy indicated that modified maghnite was perfectly distributed 3 % by weight in the polyvinylidene fluoride matrix. The mechanical properties of the nanocomposites were evaluated according to the filler material used and the polyvinylidene fluoride matrix.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyvinylidene fluoride/maghnite nanocomposites: fabrication and study of structural, thermal and mechanical properties\",\"authors\":\"Zoulikha Khiati, L. Mrah\",\"doi\":\"10.1515/ipp-2022-4302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract An in-depth study of polyvinylidene fluoride (PVDF) based nanocomposite systems will be the focus of this research. This polymer being hydrophobic and apolar, it will be unlikely to generate strong interactions with clay leaves called organophilic maghnite. The challenge of this study will therefore be to manage the load/polymer interfaces by using montmorillonite with specific surface treatments by adding a surfactant Cetyltrimethylammonium bromide. Therefore, a significant improvement in mechanical and thermal properties was observed. The properties of PVDFNC nanocomposites were evaluated using various physico-chemical techniques (XRD, FTIR, TGA, DSC, TEM, SEM). The results of the structural and thermal measurements carried out on these products reveal that the structural concept of the surfactant influences both the morphological profile, the thermal and mechanical properties of the nanocomposites obtained. Accelerated crystallization is observed in PVDNC nanocomposites as an effective nucleation agent, the crystals formed are predominantly β shaped and have a small number of polar α crystals. Measurements by X-ray diffraction, as well as transmission and scanning electron microscopy indicated that modified maghnite was perfectly distributed 3 % by weight in the polyvinylidene fluoride matrix. The mechanical properties of the nanocomposites were evaluated according to the filler material used and the polyvinylidene fluoride matrix.\",\"PeriodicalId\":14410,\"journal\":{\"name\":\"International Polymer Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Polymer Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2022-4302\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4302","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Polyvinylidene fluoride/maghnite nanocomposites: fabrication and study of structural, thermal and mechanical properties
Abstract An in-depth study of polyvinylidene fluoride (PVDF) based nanocomposite systems will be the focus of this research. This polymer being hydrophobic and apolar, it will be unlikely to generate strong interactions with clay leaves called organophilic maghnite. The challenge of this study will therefore be to manage the load/polymer interfaces by using montmorillonite with specific surface treatments by adding a surfactant Cetyltrimethylammonium bromide. Therefore, a significant improvement in mechanical and thermal properties was observed. The properties of PVDFNC nanocomposites were evaluated using various physico-chemical techniques (XRD, FTIR, TGA, DSC, TEM, SEM). The results of the structural and thermal measurements carried out on these products reveal that the structural concept of the surfactant influences both the morphological profile, the thermal and mechanical properties of the nanocomposites obtained. Accelerated crystallization is observed in PVDNC nanocomposites as an effective nucleation agent, the crystals formed are predominantly β shaped and have a small number of polar α crystals. Measurements by X-ray diffraction, as well as transmission and scanning electron microscopy indicated that modified maghnite was perfectly distributed 3 % by weight in the polyvinylidene fluoride matrix. The mechanical properties of the nanocomposites were evaluated according to the filler material used and the polyvinylidene fluoride matrix.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.