Sashi Debnath, G. Masilamani, Abhijeet R. Agrawal, N. R. Kumar, C. Kumar, Sanjio S. Zade, Anjan Bedi
{"title":"环五[c]噻吩和二酮吡咯基红绿蓝电致变色聚合物","authors":"Sashi Debnath, G. Masilamani, Abhijeet R. Agrawal, N. R. Kumar, C. Kumar, Sanjio S. Zade, Anjan Bedi","doi":"10.1055/s-0042-1757979","DOIUrl":null,"url":null,"abstract":"Cyclopenta[c]thiophene (CPT)-based polymers are potential candidates in organic electronics. Here, we report the first solution-processable red homopolymer (P1) of a thiophene-capped derivative of CPT (DHTCPT), and a blue homopolymer (P2) of N-substituted thienodiketopyrrolopyrrole (DEHTDPP). Additionally, by alternatingly copolymerizing the DHTCPT and DEHTDPP units, we achieved the green copolymer P3, thus completing the red-green-blue color wheels. We have shown experimentally and computationally (time-dependent density functional theory and natural bond orbital calculations) that P1 and P2 have very different optoelectronic features. However, in a donor–acceptor (D–A) copolymer P3, the optoelectronic properties have been tuned significantly to keep it in an intermediate range of P1 and P2. P2 and P3 absorb throughout the whole UV-vis range of the solar spectrum. Furthermore, all polymers showed electrochromism to switch colors between neutral and polaronic states in solution. For P1, the maximum optical contrast (%ΔT) was observed for the SOMO→LUMO transition, whereas P3 displayed the maximum %ΔT at the HOMO→LUMO transition.","PeriodicalId":93348,"journal":{"name":"Organic Materials","volume":"4 1","pages":"268 - 276"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cyclopenta[ c ]thiophene- and Diketopyrrolopyrrole-Based Red-Green-Blue Electrochromic Polymers\",\"authors\":\"Sashi Debnath, G. Masilamani, Abhijeet R. Agrawal, N. R. Kumar, C. Kumar, Sanjio S. Zade, Anjan Bedi\",\"doi\":\"10.1055/s-0042-1757979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyclopenta[c]thiophene (CPT)-based polymers are potential candidates in organic electronics. Here, we report the first solution-processable red homopolymer (P1) of a thiophene-capped derivative of CPT (DHTCPT), and a blue homopolymer (P2) of N-substituted thienodiketopyrrolopyrrole (DEHTDPP). Additionally, by alternatingly copolymerizing the DHTCPT and DEHTDPP units, we achieved the green copolymer P3, thus completing the red-green-blue color wheels. We have shown experimentally and computationally (time-dependent density functional theory and natural bond orbital calculations) that P1 and P2 have very different optoelectronic features. However, in a donor–acceptor (D–A) copolymer P3, the optoelectronic properties have been tuned significantly to keep it in an intermediate range of P1 and P2. P2 and P3 absorb throughout the whole UV-vis range of the solar spectrum. Furthermore, all polymers showed electrochromism to switch colors between neutral and polaronic states in solution. For P1, the maximum optical contrast (%ΔT) was observed for the SOMO→LUMO transition, whereas P3 displayed the maximum %ΔT at the HOMO→LUMO transition.\",\"PeriodicalId\":93348,\"journal\":{\"name\":\"Organic Materials\",\"volume\":\"4 1\",\"pages\":\"268 - 276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/s-0042-1757979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0042-1757979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cyclopenta[ c ]thiophene- and Diketopyrrolopyrrole-Based Red-Green-Blue Electrochromic Polymers
Cyclopenta[c]thiophene (CPT)-based polymers are potential candidates in organic electronics. Here, we report the first solution-processable red homopolymer (P1) of a thiophene-capped derivative of CPT (DHTCPT), and a blue homopolymer (P2) of N-substituted thienodiketopyrrolopyrrole (DEHTDPP). Additionally, by alternatingly copolymerizing the DHTCPT and DEHTDPP units, we achieved the green copolymer P3, thus completing the red-green-blue color wheels. We have shown experimentally and computationally (time-dependent density functional theory and natural bond orbital calculations) that P1 and P2 have very different optoelectronic features. However, in a donor–acceptor (D–A) copolymer P3, the optoelectronic properties have been tuned significantly to keep it in an intermediate range of P1 and P2. P2 and P3 absorb throughout the whole UV-vis range of the solar spectrum. Furthermore, all polymers showed electrochromism to switch colors between neutral and polaronic states in solution. For P1, the maximum optical contrast (%ΔT) was observed for the SOMO→LUMO transition, whereas P3 displayed the maximum %ΔT at the HOMO→LUMO transition.