{"title":"与Θ-Type广义分数核相关的分数型Marcinkiewicz积分算子及其在非齐次空间上的交换子","authors":"G. Lu, S. Tao, Miaomiao Wang","doi":"10.1515/agms-2022-0137","DOIUrl":null,"url":null,"abstract":"Abstract Let (𝒳, d, μ) be a non-homogeneous metric measure space satisfying the upper doubling and geometrically doubling conditions in the sense of Hytönen. Under assumption that θ and dominating function λ satisfy certain conditions, the authors prove that fractional type Marcinkiewicz integral operator M˜ \\tilde M α,lρ,q associated with θ-type generalized fractional kernel is bounded from the generalized Morrey space ℒr,ϕp/r,κ (μ) into space ℒp,ϕ,κ (μ), and bounded from the Lebesgue space Lr(μ) into space Lp(μ). Furthermore, the boundedness of commutator M˜ \\tilde M α,l,ρq,b generated by b∈RBMO˜(μ) b \\in \\widetilde {RBMO}\\left( \\mu \\right) and the M˜ \\tilde M α,l,ρq,b on space ℒp(μ) and on space ℒp,ϕ,κ (μ) is also obtained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractional Type Marcinkiewicz Integral Operator Associated with Θ-Type Generalized Fractional Kernel and Its Commutator on Non-homogeneous Spaces\",\"authors\":\"G. Lu, S. Tao, Miaomiao Wang\",\"doi\":\"10.1515/agms-2022-0137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let (𝒳, d, μ) be a non-homogeneous metric measure space satisfying the upper doubling and geometrically doubling conditions in the sense of Hytönen. Under assumption that θ and dominating function λ satisfy certain conditions, the authors prove that fractional type Marcinkiewicz integral operator M˜ \\\\tilde M α,lρ,q associated with θ-type generalized fractional kernel is bounded from the generalized Morrey space ℒr,ϕp/r,κ (μ) into space ℒp,ϕ,κ (μ), and bounded from the Lebesgue space Lr(μ) into space Lp(μ). Furthermore, the boundedness of commutator M˜ \\\\tilde M α,l,ρq,b generated by b∈RBMO˜(μ) b \\\\in \\\\widetilde {RBMO}\\\\left( \\\\mu \\\\right) and the M˜ \\\\tilde M α,l,ρq,b on space ℒp(μ) and on space ℒp,ϕ,κ (μ) is also obtained.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2022-0137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2022-0137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
设(f, d, μ)是满足Hytönen意义上的上加倍和几何加倍条件的非齐次度量度量空间。在θ和主导函数λ满足一定条件的假设下,证明了与θ型广义分数型核相关的分数型Marcinkiewicz积分算子M ~ \tilde M α,lρ,q从广义Morrey空间∑,ϕ /r,κ (μ)有界到∑,φ,κ (μ)空间,并从Lebesgue空间Lr(μ)有界到∑(μ)空间。此外,还得到了由b∈RBMO≈(μ) b \in\widetilde RBMO \left ({}\mu\right)生成的换向子M ~ \tilde M α,l,ρq,b和M ~ \tilde M α,l,ρq,b在空间__p (μ)和空间__p, φ,κ (μ)上的有界性。
Fractional Type Marcinkiewicz Integral Operator Associated with Θ-Type Generalized Fractional Kernel and Its Commutator on Non-homogeneous Spaces
Abstract Let (𝒳, d, μ) be a non-homogeneous metric measure space satisfying the upper doubling and geometrically doubling conditions in the sense of Hytönen. Under assumption that θ and dominating function λ satisfy certain conditions, the authors prove that fractional type Marcinkiewicz integral operator M˜ \tilde M α,lρ,q associated with θ-type generalized fractional kernel is bounded from the generalized Morrey space ℒr,ϕp/r,κ (μ) into space ℒp,ϕ,κ (μ), and bounded from the Lebesgue space Lr(μ) into space Lp(μ). Furthermore, the boundedness of commutator M˜ \tilde M α,l,ρq,b generated by b∈RBMO˜(μ) b \in \widetilde {RBMO}\left( \mu \right) and the M˜ \tilde M α,l,ρq,b on space ℒp(μ) and on space ℒp,ϕ,κ (μ) is also obtained.