M. A. Musa, M. F. Ahmad, M. Roslan, F. Zulkifli, A. Fitriadhy, M. N. Nazri, M. H. Salleh, M. A. Rahman, M. H. Mohd
{"title":"超顶防波堤坡道形状能量转换的试验研究","authors":"M. A. Musa, M. F. Ahmad, M. Roslan, F. Zulkifli, A. Fitriadhy, M. N. Nazri, M. H. Salleh, M. A. Rahman, M. H. Mohd","doi":"10.3329/jname.v18i1.49209","DOIUrl":null,"url":null,"abstract":"The utilization of the existing breakwater constructions into wave energy conversion has been often adopted to rendering a revenue of the capital cost of investment. The paper has contributed to viable concept of a new integration design through more effectively capturing wave-overtopping which finally converts into electrical energy. This design is hereafter called Overtopping Breakwater for Energy Conversion (OBREC). The development of an experimental test of the current OBREC has been conducted to obtain a proper ramp shape through evaluating the amounts of the wave-overtopping discharges into the reservoir incorporated with wave-reflection coefficients. To achieve the objective, several geometry ramps such as linear, convex, concave and cubic shapes have been experimentally investigated at the National Research Institute Malaysia (NAHRIM) laboratory. The experimental study showed that the cubic-ramp shape has resulted in more significant amount of the wave-overtopping discharge into the reservoir associated with the low wave-reflection coefficient than the other ramp shapes. In general, it is merely concluded that this investigation provides very promising concept of the new proposed OBREC design to harness the larger wave energy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an experimental test for evaluating ramp shapes on overtopping breakwater for energy conversion\",\"authors\":\"M. A. Musa, M. F. Ahmad, M. Roslan, F. Zulkifli, A. Fitriadhy, M. N. Nazri, M. H. Salleh, M. A. Rahman, M. H. Mohd\",\"doi\":\"10.3329/jname.v18i1.49209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of the existing breakwater constructions into wave energy conversion has been often adopted to rendering a revenue of the capital cost of investment. The paper has contributed to viable concept of a new integration design through more effectively capturing wave-overtopping which finally converts into electrical energy. This design is hereafter called Overtopping Breakwater for Energy Conversion (OBREC). The development of an experimental test of the current OBREC has been conducted to obtain a proper ramp shape through evaluating the amounts of the wave-overtopping discharges into the reservoir incorporated with wave-reflection coefficients. To achieve the objective, several geometry ramps such as linear, convex, concave and cubic shapes have been experimentally investigated at the National Research Institute Malaysia (NAHRIM) laboratory. The experimental study showed that the cubic-ramp shape has resulted in more significant amount of the wave-overtopping discharge into the reservoir associated with the low wave-reflection coefficient than the other ramp shapes. In general, it is merely concluded that this investigation provides very promising concept of the new proposed OBREC design to harness the larger wave energy.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i1.49209\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.49209","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of an experimental test for evaluating ramp shapes on overtopping breakwater for energy conversion
The utilization of the existing breakwater constructions into wave energy conversion has been often adopted to rendering a revenue of the capital cost of investment. The paper has contributed to viable concept of a new integration design through more effectively capturing wave-overtopping which finally converts into electrical energy. This design is hereafter called Overtopping Breakwater for Energy Conversion (OBREC). The development of an experimental test of the current OBREC has been conducted to obtain a proper ramp shape through evaluating the amounts of the wave-overtopping discharges into the reservoir incorporated with wave-reflection coefficients. To achieve the objective, several geometry ramps such as linear, convex, concave and cubic shapes have been experimentally investigated at the National Research Institute Malaysia (NAHRIM) laboratory. The experimental study showed that the cubic-ramp shape has resulted in more significant amount of the wave-overtopping discharge into the reservoir associated with the low wave-reflection coefficient than the other ramp shapes. In general, it is merely concluded that this investigation provides very promising concept of the new proposed OBREC design to harness the larger wave energy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.