{"title":"无约束无导数优化的新子空间方法","authors":"M. Kimiaei, A. Neumaier, Parvaneh Faramarzi","doi":"10.1145/3618297","DOIUrl":null,"url":null,"abstract":"This paper defines an efficient subspace method, called SSDFO, for unconstrained derivative-free optimization problems where the gradients of the objective function are Lipschitz continuous but only exact function values are available. SSDFO employs line searches along directions constructed on the basis of quadratic models. These approximate the objective function in a subspace spanned by some previous search directions. A worst case complexity bound on the number of iterations and function evaluations is derived for a basic algorithm using this technique. Numerical results for a practical variant with additional heuristic features show that, on the unconstrained CUTEst test problems, SSDFO has superior performance compared to the best solvers from the literature.","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New subspace method for unconstrained derivative-free optimization\",\"authors\":\"M. Kimiaei, A. Neumaier, Parvaneh Faramarzi\",\"doi\":\"10.1145/3618297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper defines an efficient subspace method, called SSDFO, for unconstrained derivative-free optimization problems where the gradients of the objective function are Lipschitz continuous but only exact function values are available. SSDFO employs line searches along directions constructed on the basis of quadratic models. These approximate the objective function in a subspace spanned by some previous search directions. A worst case complexity bound on the number of iterations and function evaluations is derived for a basic algorithm using this technique. Numerical results for a practical variant with additional heuristic features show that, on the unconstrained CUTEst test problems, SSDFO has superior performance compared to the best solvers from the literature.\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3618297\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3618297","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
New subspace method for unconstrained derivative-free optimization
This paper defines an efficient subspace method, called SSDFO, for unconstrained derivative-free optimization problems where the gradients of the objective function are Lipschitz continuous but only exact function values are available. SSDFO employs line searches along directions constructed on the basis of quadratic models. These approximate the objective function in a subspace spanned by some previous search directions. A worst case complexity bound on the number of iterations and function evaluations is derived for a basic algorithm using this technique. Numerical results for a practical variant with additional heuristic features show that, on the unconstrained CUTEst test problems, SSDFO has superior performance compared to the best solvers from the literature.
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.