无约束无导数优化的新子空间方法

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
M. Kimiaei, A. Neumaier, Parvaneh Faramarzi
{"title":"无约束无导数优化的新子空间方法","authors":"M. Kimiaei, A. Neumaier, Parvaneh Faramarzi","doi":"10.1145/3618297","DOIUrl":null,"url":null,"abstract":"This paper defines an efficient subspace method, called SSDFO, for unconstrained derivative-free optimization problems where the gradients of the objective function are Lipschitz continuous but only exact function values are available. SSDFO employs line searches along directions constructed on the basis of quadratic models. These approximate the objective function in a subspace spanned by some previous search directions. A worst case complexity bound on the number of iterations and function evaluations is derived for a basic algorithm using this technique. Numerical results for a practical variant with additional heuristic features show that, on the unconstrained CUTEst test problems, SSDFO has superior performance compared to the best solvers from the literature.","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New subspace method for unconstrained derivative-free optimization\",\"authors\":\"M. Kimiaei, A. Neumaier, Parvaneh Faramarzi\",\"doi\":\"10.1145/3618297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper defines an efficient subspace method, called SSDFO, for unconstrained derivative-free optimization problems where the gradients of the objective function are Lipschitz continuous but only exact function values are available. SSDFO employs line searches along directions constructed on the basis of quadratic models. These approximate the objective function in a subspace spanned by some previous search directions. A worst case complexity bound on the number of iterations and function evaluations is derived for a basic algorithm using this technique. Numerical results for a practical variant with additional heuristic features show that, on the unconstrained CUTEst test problems, SSDFO has superior performance compared to the best solvers from the literature.\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3618297\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3618297","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

本文针对目标函数的梯度为Lipschitz连续但只有精确函数值的无约束无导数优化问题,定义了一种有效的子空间方法SSDFO。SSDFO采用基于二次模型构建的方向进行直线搜索。这些近似的目标函数在一个子空间由一些先前的搜索方向。对于使用该技术的基本算法,导出了迭代次数和函数求值的最坏情况复杂度界限。对具有附加启发式特征的实际变体的数值结果表明,在无约束CUTEst测试问题上,SSDFO与文献中的最佳求解器相比具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New subspace method for unconstrained derivative-free optimization
This paper defines an efficient subspace method, called SSDFO, for unconstrained derivative-free optimization problems where the gradients of the objective function are Lipschitz continuous but only exact function values are available. SSDFO employs line searches along directions constructed on the basis of quadratic models. These approximate the objective function in a subspace spanned by some previous search directions. A worst case complexity bound on the number of iterations and function evaluations is derived for a basic algorithm using this technique. Numerical results for a practical variant with additional heuristic features show that, on the unconstrained CUTEst test problems, SSDFO has superior performance compared to the best solvers from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信