G. Molina, Fnu Aktaruzzaman, V. Soloiu, Mosfequr Rahman
{"title":"水/乙二醇/氧化铝纳米流体对热交换器材料冲蚀磨损的影响","authors":"G. Molina, Fnu Aktaruzzaman, V. Soloiu, Mosfequr Rahman","doi":"10.4018/IJSEIMS.2018070101","DOIUrl":null,"url":null,"abstract":"Nanofluids are suspensions of nanoparticles in ordinary coolants, but their tribological effects on heat-exchanger materials are unknown. Previous research has explored wear from distilled-water-base nanofluids only, while most engine-coolants are alcohol solutions in water. This article presents testing of aluminum and copper by jet impingement of 50%-ethylene-glycol in water solution and of its 2%-alumina nanofluid. The effects are investigated of nanoparticle addition on the anticorrosion protection provided by ethylene glycol. The observed modifications showed that ethylene-glycol in water nanofluid led to wear patterns that were different than those obtained with the base-fluid; nanoalumina addition enhanced erosion and corrosion on aluminum and copper. Comparing the effects of ethylene glycol and its nanofluid solutions to those from same tests performed with distilled-water and its nanofluid suggests that nanopowders can substantially enhance wear by decreasing the anticorrosion action of ethylene glycol by a synergetic mechanism of erosion-corrosion","PeriodicalId":37123,"journal":{"name":"International Journal of Surface Engineering and Interdisciplinary Materials Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4018/IJSEIMS.2018070101","citationCount":"3","resultStr":"{\"title\":\"Erosion-Corrosion Wear of Heat-Exchanger Materials by Water/Ethylene-Glycol/Alumina Nanofluids\",\"authors\":\"G. Molina, Fnu Aktaruzzaman, V. Soloiu, Mosfequr Rahman\",\"doi\":\"10.4018/IJSEIMS.2018070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanofluids are suspensions of nanoparticles in ordinary coolants, but their tribological effects on heat-exchanger materials are unknown. Previous research has explored wear from distilled-water-base nanofluids only, while most engine-coolants are alcohol solutions in water. This article presents testing of aluminum and copper by jet impingement of 50%-ethylene-glycol in water solution and of its 2%-alumina nanofluid. The effects are investigated of nanoparticle addition on the anticorrosion protection provided by ethylene glycol. The observed modifications showed that ethylene-glycol in water nanofluid led to wear patterns that were different than those obtained with the base-fluid; nanoalumina addition enhanced erosion and corrosion on aluminum and copper. Comparing the effects of ethylene glycol and its nanofluid solutions to those from same tests performed with distilled-water and its nanofluid suggests that nanopowders can substantially enhance wear by decreasing the anticorrosion action of ethylene glycol by a synergetic mechanism of erosion-corrosion\",\"PeriodicalId\":37123,\"journal\":{\"name\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4018/IJSEIMS.2018070101\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Surface Engineering and Interdisciplinary Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSEIMS.2018070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Engineering and Interdisciplinary Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSEIMS.2018070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Erosion-Corrosion Wear of Heat-Exchanger Materials by Water/Ethylene-Glycol/Alumina Nanofluids
Nanofluids are suspensions of nanoparticles in ordinary coolants, but their tribological effects on heat-exchanger materials are unknown. Previous research has explored wear from distilled-water-base nanofluids only, while most engine-coolants are alcohol solutions in water. This article presents testing of aluminum and copper by jet impingement of 50%-ethylene-glycol in water solution and of its 2%-alumina nanofluid. The effects are investigated of nanoparticle addition on the anticorrosion protection provided by ethylene glycol. The observed modifications showed that ethylene-glycol in water nanofluid led to wear patterns that were different than those obtained with the base-fluid; nanoalumina addition enhanced erosion and corrosion on aluminum and copper. Comparing the effects of ethylene glycol and its nanofluid solutions to those from same tests performed with distilled-water and its nanofluid suggests that nanopowders can substantially enhance wear by decreasing the anticorrosion action of ethylene glycol by a synergetic mechanism of erosion-corrosion