提出了一种基于Myers-Briggs型指标的血型分类数据不平衡处理方法

Ahmad Taufiq Akbar, Rochmat Husaini, Bagus Muhammad Akbar, S. Saifullah
{"title":"提出了一种基于Myers-Briggs型指标的血型分类数据不平衡处理方法","authors":"Ahmad Taufiq Akbar, Rochmat Husaini, Bagus Muhammad Akbar, S. Saifullah","doi":"10.14710/JTSISKOM.2020.13625","DOIUrl":null,"url":null,"abstract":"Blood type still leads to an assumption about its relation to some personality aspects. This study observes preprocessing methods for improving the classification accuracy of MBTI data to determine blood type. The training and testing data use 250 data from the MBTI questionnaire answers given by 250 respondents. The classification uses the k-Nearest Neighbor (k-NN) algorithm. Without preprocessing, k-NN results in about 32 % accuracy, so it needs some preprocessing to handle data imbalance before the classification. The proposed preprocessing consists of two-stage, the first stage is the unsupervised resample, and the second is the supervised resample. For the validation, it uses ten cross-validations. The result of k-Nearest Neighbor classification after using these proposed preprocessing stages has finally increased the accuracy, F-score, and recall significantly.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"8 1","pages":"276-283"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A proposed method for handling an imbalance data in classification of blood type based on Myers-Briggs type indicator\",\"authors\":\"Ahmad Taufiq Akbar, Rochmat Husaini, Bagus Muhammad Akbar, S. Saifullah\",\"doi\":\"10.14710/JTSISKOM.2020.13625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blood type still leads to an assumption about its relation to some personality aspects. This study observes preprocessing methods for improving the classification accuracy of MBTI data to determine blood type. The training and testing data use 250 data from the MBTI questionnaire answers given by 250 respondents. The classification uses the k-Nearest Neighbor (k-NN) algorithm. Without preprocessing, k-NN results in about 32 % accuracy, so it needs some preprocessing to handle data imbalance before the classification. The proposed preprocessing consists of two-stage, the first stage is the unsupervised resample, and the second is the supervised resample. For the validation, it uses ten cross-validations. The result of k-Nearest Neighbor classification after using these proposed preprocessing stages has finally increased the accuracy, F-score, and recall significantly.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\"8 1\",\"pages\":\"276-283\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/JTSISKOM.2020.13625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.2020.13625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

血型仍然导致对其与某些个性方面的关系的假设。本研究观察了提高MBTI数据分类精度的预处理方法,以确定血型。培训和测试数据使用了250名受访者提供的MBTI问卷答案中的250个数据。该分类使用k最近邻(k-NN)算法。在没有预处理的情况下,k-NN的准确率约为32%,因此在分类之前需要进行一些预处理来处理数据的不平衡。所提出的预处理由两个阶段组成,第一阶段是无监督重采样,第二阶段是有监督重采样。对于验证,它使用了十个交叉验证。在使用这些提出的预处理阶段后,k-最近邻分类的结果最终显著提高了准确性、F-得分和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A proposed method for handling an imbalance data in classification of blood type based on Myers-Briggs type indicator
Blood type still leads to an assumption about its relation to some personality aspects. This study observes preprocessing methods for improving the classification accuracy of MBTI data to determine blood type. The training and testing data use 250 data from the MBTI questionnaire answers given by 250 respondents. The classification uses the k-Nearest Neighbor (k-NN) algorithm. Without preprocessing, k-NN results in about 32 % accuracy, so it needs some preprocessing to handle data imbalance before the classification. The proposed preprocessing consists of two-stage, the first stage is the unsupervised resample, and the second is the supervised resample. For the validation, it uses ten cross-validations. The result of k-Nearest Neighbor classification after using these proposed preprocessing stages has finally increased the accuracy, F-score, and recall significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信