北太平洋西部季风- tc联合降水特征及其与海陆热条件的关系

IF 1.6 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
Jingying Wang, Zhiwei Wu
{"title":"北太平洋西部季风- tc联合降水特征及其与海陆热条件的关系","authors":"Jingying Wang, Zhiwei Wu","doi":"10.1080/07055900.2023.2221217","DOIUrl":null,"url":null,"abstract":"ABSTRACT The East Asian summer monsoon (EASM) and tropical cyclones (TCs) in the Western North Pacific (WNP) are both responsible for the East Asian summer rainfall, yet most studies only examine their rainfall separately. In this study, the East Asian summer rainfall for the past 39-years (1983-2021, May to September) is divided into three categories: monsoon rainfall without TCs’ influence (monsoon-only rainfall), TC rainfall independent of monsoon (TC-only rainfall) and monsoon-TC joint (MS-TC) rainfall. Compared with the other two categories, MS-TC rainfall exhibits distinctive features. During strong MS-TC years, a distinct cyclonic anomaly centre prevails over tropical WNP with anomalous southeasterlies extending from the tropics to the subtropics. Large rainfall centres are located at the west edge of the northern Philippines, the Philippine Basin, and the Korean Peninsula. The WNP Subtropical High (WNPSH) withdrawals eastward, with an eastward extension of the monsoon trough. These circulation configurations provide favourable environmental conditions for more northward movements of TCs, including low-level positive relative vorticity and enhanced vertical motion in WNP. Observational and theoretical analysis results show that anomalous thermal conditions in the southern Maritime Continent (MC) (97.5°−112.5°E, 8°−18°S) in early spring (March to April) can be a precursor for anomalous MS-TC rainfall. Strong MS-TC rainfall is usually preceded by depressed convection and anomalous westerlies near the MC. These anomalies can persist through the following summer and induce the positive feedback of cooling sea surface temperature (SST) in MC and cyclonic anomalies in tropical WNP through the wind-evaporation-SST (WES) effect and local Hadley circulation anomalies. The linear baroclinic model (LBM) experiments demonstrate that enhanced convection in tropical WNP further maintains the anomalous cyclone through Gill's response, which in turn modulates the distribution and amount of MS-TC rainfall.","PeriodicalId":55434,"journal":{"name":"Atmosphere-Ocean","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinctive Features of Monsoon-TC Joint Rainfall over Western North Pacific and its Relationship with the Maritime Continent Thermal Condition\",\"authors\":\"Jingying Wang, Zhiwei Wu\",\"doi\":\"10.1080/07055900.2023.2221217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The East Asian summer monsoon (EASM) and tropical cyclones (TCs) in the Western North Pacific (WNP) are both responsible for the East Asian summer rainfall, yet most studies only examine their rainfall separately. In this study, the East Asian summer rainfall for the past 39-years (1983-2021, May to September) is divided into three categories: monsoon rainfall without TCs’ influence (monsoon-only rainfall), TC rainfall independent of monsoon (TC-only rainfall) and monsoon-TC joint (MS-TC) rainfall. Compared with the other two categories, MS-TC rainfall exhibits distinctive features. During strong MS-TC years, a distinct cyclonic anomaly centre prevails over tropical WNP with anomalous southeasterlies extending from the tropics to the subtropics. Large rainfall centres are located at the west edge of the northern Philippines, the Philippine Basin, and the Korean Peninsula. The WNP Subtropical High (WNPSH) withdrawals eastward, with an eastward extension of the monsoon trough. These circulation configurations provide favourable environmental conditions for more northward movements of TCs, including low-level positive relative vorticity and enhanced vertical motion in WNP. Observational and theoretical analysis results show that anomalous thermal conditions in the southern Maritime Continent (MC) (97.5°−112.5°E, 8°−18°S) in early spring (March to April) can be a precursor for anomalous MS-TC rainfall. Strong MS-TC rainfall is usually preceded by depressed convection and anomalous westerlies near the MC. These anomalies can persist through the following summer and induce the positive feedback of cooling sea surface temperature (SST) in MC and cyclonic anomalies in tropical WNP through the wind-evaporation-SST (WES) effect and local Hadley circulation anomalies. The linear baroclinic model (LBM) experiments demonstrate that enhanced convection in tropical WNP further maintains the anomalous cyclone through Gill's response, which in turn modulates the distribution and amount of MS-TC rainfall.\",\"PeriodicalId\":55434,\"journal\":{\"name\":\"Atmosphere-Ocean\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmosphere-Ocean\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/07055900.2023.2221217\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmosphere-Ocean","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/07055900.2023.2221217","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinctive Features of Monsoon-TC Joint Rainfall over Western North Pacific and its Relationship with the Maritime Continent Thermal Condition
ABSTRACT The East Asian summer monsoon (EASM) and tropical cyclones (TCs) in the Western North Pacific (WNP) are both responsible for the East Asian summer rainfall, yet most studies only examine their rainfall separately. In this study, the East Asian summer rainfall for the past 39-years (1983-2021, May to September) is divided into three categories: monsoon rainfall without TCs’ influence (monsoon-only rainfall), TC rainfall independent of monsoon (TC-only rainfall) and monsoon-TC joint (MS-TC) rainfall. Compared with the other two categories, MS-TC rainfall exhibits distinctive features. During strong MS-TC years, a distinct cyclonic anomaly centre prevails over tropical WNP with anomalous southeasterlies extending from the tropics to the subtropics. Large rainfall centres are located at the west edge of the northern Philippines, the Philippine Basin, and the Korean Peninsula. The WNP Subtropical High (WNPSH) withdrawals eastward, with an eastward extension of the monsoon trough. These circulation configurations provide favourable environmental conditions for more northward movements of TCs, including low-level positive relative vorticity and enhanced vertical motion in WNP. Observational and theoretical analysis results show that anomalous thermal conditions in the southern Maritime Continent (MC) (97.5°−112.5°E, 8°−18°S) in early spring (March to April) can be a precursor for anomalous MS-TC rainfall. Strong MS-TC rainfall is usually preceded by depressed convection and anomalous westerlies near the MC. These anomalies can persist through the following summer and induce the positive feedback of cooling sea surface temperature (SST) in MC and cyclonic anomalies in tropical WNP through the wind-evaporation-SST (WES) effect and local Hadley circulation anomalies. The linear baroclinic model (LBM) experiments demonstrate that enhanced convection in tropical WNP further maintains the anomalous cyclone through Gill's response, which in turn modulates the distribution and amount of MS-TC rainfall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmosphere-Ocean
Atmosphere-Ocean 地学-海洋学
CiteScore
2.50
自引率
16.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: Atmosphere-Ocean is the principal scientific journal of the Canadian Meteorological and Oceanographic Society (CMOS). It contains results of original research, survey articles, notes and comments on published papers in all fields of the atmospheric, oceanographic and hydrological sciences. Arctic, coastal and mid- to high-latitude regions are areas of particular interest. Applied or fundamental research contributions in English or French on the following topics are welcomed: climate and climatology; observation technology, remote sensing; forecasting, modelling, numerical methods; physics, dynamics, chemistry, biogeochemistry; boundary layers, pollution, aerosols; circulation, cloud physics, hydrology, air-sea interactions; waves, ice, energy exchange and related environmental topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信