活性炭中氧化物的存在对除砷的影响

Q3 Environmental Science
Thearak Vong, Korea Phat, Seunghee Lee, Shinhoo Kang, Jinhwan Oh
{"title":"活性炭中氧化物的存在对除砷的影响","authors":"Thearak Vong, Korea Phat, Seunghee Lee, Shinhoo Kang, Jinhwan Oh","doi":"10.32526/ennrj/21/20230066","DOIUrl":null,"url":null,"abstract":"This study investigated the effect of oxides on the removal of As when present in simple mixtures with granular activated carbon (GAC) particles. The performance of these mixtures was compared with other reported GAC-based adsorbents. A standard curve for ultraviolet adsorption vs. As concentration was obtained using the silver diethyldithiocarbamate (SDDC) method to evaluate various samples. A preliminary study was carried out to find the optimal conditions for experiments. For 50 mL samples with 2.35 ppm As, the optimal values of pH, adsorption time, and amount of adsorbent were pH 7, 30 min, and 50 mg, respectively. The ratio between the amount of adsorbent and well water in this study showed a superior As adsorption capacity (1 g/L, 2.1 mg/g) compared to similar adsorbents reported previously (12.5 g/L, 1.0-1.4 mg/g). Among the adsorbents, KOH-treated AC-Mn3O4 exhibited the best performance in As removal with an efficiency of ~95%. The oxide particles had a synergistic effect with GAC on As removal. This was primarily due to the change in the potential of partially agglomerated nano Mn3O4 particles on the ACK surface. The influence of the surface area of the adsorbents was not pronounced. All results were explained in terms of microstructure, specific surface area, and zeta potential. This finding could be extended to other activated carbons (AC) obtained from different sources.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Oxide Presence in Activated Carbon on Arsenic Removal\",\"authors\":\"Thearak Vong, Korea Phat, Seunghee Lee, Shinhoo Kang, Jinhwan Oh\",\"doi\":\"10.32526/ennrj/21/20230066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated the effect of oxides on the removal of As when present in simple mixtures with granular activated carbon (GAC) particles. The performance of these mixtures was compared with other reported GAC-based adsorbents. A standard curve for ultraviolet adsorption vs. As concentration was obtained using the silver diethyldithiocarbamate (SDDC) method to evaluate various samples. A preliminary study was carried out to find the optimal conditions for experiments. For 50 mL samples with 2.35 ppm As, the optimal values of pH, adsorption time, and amount of adsorbent were pH 7, 30 min, and 50 mg, respectively. The ratio between the amount of adsorbent and well water in this study showed a superior As adsorption capacity (1 g/L, 2.1 mg/g) compared to similar adsorbents reported previously (12.5 g/L, 1.0-1.4 mg/g). Among the adsorbents, KOH-treated AC-Mn3O4 exhibited the best performance in As removal with an efficiency of ~95%. The oxide particles had a synergistic effect with GAC on As removal. This was primarily due to the change in the potential of partially agglomerated nano Mn3O4 particles on the ACK surface. The influence of the surface area of the adsorbents was not pronounced. All results were explained in terms of microstructure, specific surface area, and zeta potential. This finding could be extended to other activated carbons (AC) obtained from different sources.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/21/20230066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/21/20230066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了氧化物在与颗粒活性炭(GAC)颗粒的简单混合物中对As去除的影响。将这些混合物的性能与其他报道的基于GAC的吸附剂进行了比较。使用二乙基二硫代氨基甲酸银(SDDC)方法获得紫外线吸附对As浓度的标准曲线,以评估各种样品。进行了初步研究,以找到实验的最佳条件。对于含有2.35ppm As的50mL样品,pH、吸附时间和吸附剂量的最佳值分别为pH 7、30分钟和50mg。与先前报道的类似吸附剂(12.5g/L,1.0-1.4mg/g)相比,本研究中吸附剂和井水的量之比显示出优异的As吸附能力(1g/L,2.1mg/g)。在吸附剂中,KOH处理的AC-Mn3O4对As的去除效果最好,去除率为~95%。氧化物颗粒与GAC对As的去除具有协同作用。这主要是由于ACK表面上部分团聚的纳米Mn3O4颗粒的电势的变化。吸附剂的表面积的影响并不明显。所有结果都从微观结构、比表面积和ζ电位方面进行了解释。这一发现可以推广到从不同来源获得的其他活性炭(AC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Oxide Presence in Activated Carbon on Arsenic Removal
This study investigated the effect of oxides on the removal of As when present in simple mixtures with granular activated carbon (GAC) particles. The performance of these mixtures was compared with other reported GAC-based adsorbents. A standard curve for ultraviolet adsorption vs. As concentration was obtained using the silver diethyldithiocarbamate (SDDC) method to evaluate various samples. A preliminary study was carried out to find the optimal conditions for experiments. For 50 mL samples with 2.35 ppm As, the optimal values of pH, adsorption time, and amount of adsorbent were pH 7, 30 min, and 50 mg, respectively. The ratio between the amount of adsorbent and well water in this study showed a superior As adsorption capacity (1 g/L, 2.1 mg/g) compared to similar adsorbents reported previously (12.5 g/L, 1.0-1.4 mg/g). Among the adsorbents, KOH-treated AC-Mn3O4 exhibited the best performance in As removal with an efficiency of ~95%. The oxide particles had a synergistic effect with GAC on As removal. This was primarily due to the change in the potential of partially agglomerated nano Mn3O4 particles on the ACK surface. The influence of the surface area of the adsorbents was not pronounced. All results were explained in terms of microstructure, specific surface area, and zeta potential. This finding could be extended to other activated carbons (AC) obtained from different sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environment and Natural Resources Journal
Environment and Natural Resources Journal Environmental Science-Environmental Science (all)
CiteScore
1.90
自引率
0.00%
发文量
49
审稿时长
8 weeks
期刊介绍: The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信