在双步菲涅耳衍射法中应用多焦点滤波平面增强全息投影区域

IF 3.7 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Young-Jun Ann, Seung-Yeol Lee
{"title":"在双步菲涅耳衍射法中应用多焦点滤波平面增强全息投影区域","authors":"Young-Jun Ann, Seung-Yeol Lee","doi":"10.1080/15980316.2023.2203366","DOIUrl":null,"url":null,"abstract":"Computer-generated holography has been anticipated in augmented reality (AR) since it can fully provide multi-depth 3D information to users, but speckle noises are often accompanied as one of the most significant degradation factors. Since complex amplitude encoding can suppress speckle noises, applying double-phase encoding to a lensless holographic projection system using a double-step Fresnel diffraction (DSF) algorithm has been reported to reduce those noises. However, a single filtering focus at a virtual focal plane might significantly reduce the projection region compared to the maximum diffraction bandwidth of the spatial light modulator. In this paper, we applied multiple foci for the focal plane of the DSF method with off-axis phase encoding, which can expand the projection region and is applicable to display multi-depth images with DSF. Numerical analysis conducted for image quality compared with conventional single focus DSF algorithm shows that the speckle performance does not degrade so much as the number of foci increase. We expect the proposed method to be useful for holographic projection optical systems such as AR head-up display.","PeriodicalId":16257,"journal":{"name":"Journal of Information Display","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying multi-focus filtering plane in double-step Fresnel diffraction method for enhanced holographic projection region\",\"authors\":\"Young-Jun Ann, Seung-Yeol Lee\",\"doi\":\"10.1080/15980316.2023.2203366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer-generated holography has been anticipated in augmented reality (AR) since it can fully provide multi-depth 3D information to users, but speckle noises are often accompanied as one of the most significant degradation factors. Since complex amplitude encoding can suppress speckle noises, applying double-phase encoding to a lensless holographic projection system using a double-step Fresnel diffraction (DSF) algorithm has been reported to reduce those noises. However, a single filtering focus at a virtual focal plane might significantly reduce the projection region compared to the maximum diffraction bandwidth of the spatial light modulator. In this paper, we applied multiple foci for the focal plane of the DSF method with off-axis phase encoding, which can expand the projection region and is applicable to display multi-depth images with DSF. Numerical analysis conducted for image quality compared with conventional single focus DSF algorithm shows that the speckle performance does not degrade so much as the number of foci increase. We expect the proposed method to be useful for holographic projection optical systems such as AR head-up display.\",\"PeriodicalId\":16257,\"journal\":{\"name\":\"Journal of Information Display\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Display\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15980316.2023.2203366\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Display","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15980316.2023.2203366","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于计算机生成的全息技术可以为用户提供全面的多深度3D信息,因此在增强现实(AR)中备受期待,但斑点噪声往往是最重要的退化因素之一。由于复振幅编码可以抑制散斑噪声,有报道将双相位编码应用于采用双步菲涅耳衍射(DSF)算法的无透镜全息投影系统中可以降低散斑噪声。然而,与空间光调制器的最大衍射带宽相比,虚拟焦平面上的单滤波焦点可能会显著减少投影区域。本文采用离轴相位编码对DSF法的焦平面进行多焦处理,扩大了投影区域,适用于DSF显示多深度图像。与传统单焦点DSF算法相比,对图像质量进行了数值分析,结果表明,随着焦点数量的增加,散斑性能不会下降太多。我们期望所提出的方法在AR平视显示器等全息投影光学系统中有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying multi-focus filtering plane in double-step Fresnel diffraction method for enhanced holographic projection region
Computer-generated holography has been anticipated in augmented reality (AR) since it can fully provide multi-depth 3D information to users, but speckle noises are often accompanied as one of the most significant degradation factors. Since complex amplitude encoding can suppress speckle noises, applying double-phase encoding to a lensless holographic projection system using a double-step Fresnel diffraction (DSF) algorithm has been reported to reduce those noises. However, a single filtering focus at a virtual focal plane might significantly reduce the projection region compared to the maximum diffraction bandwidth of the spatial light modulator. In this paper, we applied multiple foci for the focal plane of the DSF method with off-axis phase encoding, which can expand the projection region and is applicable to display multi-depth images with DSF. Numerical analysis conducted for image quality compared with conventional single focus DSF algorithm shows that the speckle performance does not degrade so much as the number of foci increase. We expect the proposed method to be useful for holographic projection optical systems such as AR head-up display.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Information Display
Journal of Information Display MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.10
自引率
5.40%
发文量
27
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信