{"title":"Willmore泛函和Willmore流的“无梯度”扩散近似","authors":"Nils Dabrock, Sascha Knuttel, M. Roger","doi":"10.3233/ASY-221810","DOIUrl":null,"url":null,"abstract":"We introduce new diffuse approximations of the Willmore functional and the Willmore flow. They are based on a corresponding approximation of the perimeter that has been studied by Amstutz-van Goethem [Interfaces Free Bound. 14 (2012)]. We identify the candidate for the Γ-convergence, prove the Γ-limsup statement and justify the convergence to the Willmore flow by an asymptotic expansion. Furthermore, we present numerical simulations that are based on the new approximation.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Gradient-free” diffuse approximations of the Willmore functional and Willmore flow\",\"authors\":\"Nils Dabrock, Sascha Knuttel, M. Roger\",\"doi\":\"10.3233/ASY-221810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce new diffuse approximations of the Willmore functional and the Willmore flow. They are based on a corresponding approximation of the perimeter that has been studied by Amstutz-van Goethem [Interfaces Free Bound. 14 (2012)]. We identify the candidate for the Γ-convergence, prove the Γ-limsup statement and justify the convergence to the Willmore flow by an asymptotic expansion. Furthermore, we present numerical simulations that are based on the new approximation.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-221810\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/ASY-221810","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
“Gradient-free” diffuse approximations of the Willmore functional and Willmore flow
We introduce new diffuse approximations of the Willmore functional and the Willmore flow. They are based on a corresponding approximation of the perimeter that has been studied by Amstutz-van Goethem [Interfaces Free Bound. 14 (2012)]. We identify the candidate for the Γ-convergence, prove the Γ-limsup statement and justify the convergence to the Willmore flow by an asymptotic expansion. Furthermore, we present numerical simulations that are based on the new approximation.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.