K. Herlingshaw, L. Baddeley, K. Oksavik, D. Lorentzen, K. Laundal
{"title":"利用超级雷达对两个半球观测到的极地帽流通道进行统计研究","authors":"K. Herlingshaw, L. Baddeley, K. Oksavik, D. Lorentzen, K. Laundal","doi":"10.1051/swsc/2022037","DOIUrl":null,"url":null,"abstract":"This paper details the first large scale, interhemispheric statistical study into ionospheric fast flow (>900 m/s) channels in the polar cap using the SuperDARN radar network. An automatic algorithm was applied to 6 years of data (2010 – 2016) from 8 SuperDARN radars with coverage in the polar cap regions in both hemispheres. Over 17,000 flow channels were detected, the majority of which occurred in the dayside polar cap region. To determine a statistical relationship between the flow channels and the IMF, a Monte Carlo simulation was used to generate probability distribution functions for IMF conditions and dipole tilt angles. These were used as a baseline for comparisons with IMF conditions associated with the flow channels. This analysis showed that fast flow channels are preferentially driven by IMF By dominant conditions, suggesting that a magnetic tension force on the newly reconnected field lines is required to accelerate the ionospheric plasma to the high speeds on the dayside. The flow channels also occur preferentially during disturbed IMF conditions. Large populations of flow channels were observed on the flanks of the polar cap region. This indicates that significant momentum transfer from the magnetosphere can routinely occur on open field lines on the flanks, far from the dayside and nightside reconnection regions.","PeriodicalId":17034,"journal":{"name":"Journal of Space Weather and Space Climate","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Statistical Study of Polar Cap Flow Channels observed in Both Hemispheres using SuperDARN Radars\",\"authors\":\"K. Herlingshaw, L. Baddeley, K. Oksavik, D. Lorentzen, K. Laundal\",\"doi\":\"10.1051/swsc/2022037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper details the first large scale, interhemispheric statistical study into ionospheric fast flow (>900 m/s) channels in the polar cap using the SuperDARN radar network. An automatic algorithm was applied to 6 years of data (2010 – 2016) from 8 SuperDARN radars with coverage in the polar cap regions in both hemispheres. Over 17,000 flow channels were detected, the majority of which occurred in the dayside polar cap region. To determine a statistical relationship between the flow channels and the IMF, a Monte Carlo simulation was used to generate probability distribution functions for IMF conditions and dipole tilt angles. These were used as a baseline for comparisons with IMF conditions associated with the flow channels. This analysis showed that fast flow channels are preferentially driven by IMF By dominant conditions, suggesting that a magnetic tension force on the newly reconnected field lines is required to accelerate the ionospheric plasma to the high speeds on the dayside. The flow channels also occur preferentially during disturbed IMF conditions. Large populations of flow channels were observed on the flanks of the polar cap region. This indicates that significant momentum transfer from the magnetosphere can routinely occur on open field lines on the flanks, far from the dayside and nightside reconnection regions.\",\"PeriodicalId\":17034,\"journal\":{\"name\":\"Journal of Space Weather and Space Climate\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Space Weather and Space Climate\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/swsc/2022037\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Weather and Space Climate","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/swsc/2022037","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
A Statistical Study of Polar Cap Flow Channels observed in Both Hemispheres using SuperDARN Radars
This paper details the first large scale, interhemispheric statistical study into ionospheric fast flow (>900 m/s) channels in the polar cap using the SuperDARN radar network. An automatic algorithm was applied to 6 years of data (2010 – 2016) from 8 SuperDARN radars with coverage in the polar cap regions in both hemispheres. Over 17,000 flow channels were detected, the majority of which occurred in the dayside polar cap region. To determine a statistical relationship between the flow channels and the IMF, a Monte Carlo simulation was used to generate probability distribution functions for IMF conditions and dipole tilt angles. These were used as a baseline for comparisons with IMF conditions associated with the flow channels. This analysis showed that fast flow channels are preferentially driven by IMF By dominant conditions, suggesting that a magnetic tension force on the newly reconnected field lines is required to accelerate the ionospheric plasma to the high speeds on the dayside. The flow channels also occur preferentially during disturbed IMF conditions. Large populations of flow channels were observed on the flanks of the polar cap region. This indicates that significant momentum transfer from the magnetosphere can routinely occur on open field lines on the flanks, far from the dayside and nightside reconnection regions.
期刊介绍:
The Journal of Space Weather and Space Climate (SWSC) is an international multi-disciplinary and interdisciplinary peer-reviewed open access journal which publishes papers on all aspects of space weather and space climate from a broad range of scientific and technical fields including solar physics, space plasma physics, aeronomy, planetology, radio science, geophysics, biology, medicine, astronautics, aeronautics, electrical engineering, meteorology, climatology, mathematics, economy, informatics.