{"title":"一种用于自动驾驶汽车行人动作识别的微调特征描述符","authors":"P. Ushapreethi, G. Priya","doi":"10.1504/IJVICS.2021.10035880","DOIUrl":null,"url":null,"abstract":"The autonomous vehicle is the dream project of most of the majestic companies; however, providing a full-fledged autonomous vehicle is very complicated. In this paper, the pedestrian actions are captured using cameras and fine-tuned within a limited amount of time. Certain features of the captured video and their efficient feature descriptors achieve improved accuracy in pedestrian action recognition. The Skeleton based Spatio-Temporal Interest Points (S-STIP) feature is combined with the new interclass discriminative dictionaries. The sparse descriptor is constructed using sparse coding based on orthogonal matching pursuit algorithm and dictionary learning based on Efficient Block Coordinate Descent (EBCD) algorithm. Finally, the sparse descriptor is given as input to the SVM classifier for recognising pedestrian actions. The human action data sets KTH, Weizmann and JAAD are used for experimentation, and the combination of the S-STIP feature and the enhanced sparse descriptor achieves better performance compared to other existing action recognition methods.","PeriodicalId":39333,"journal":{"name":"International Journal of Vehicle Information and Communication Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fine-tuned feature descriptor for pedestrian action recognition in autonomous vehicles\",\"authors\":\"P. Ushapreethi, G. Priya\",\"doi\":\"10.1504/IJVICS.2021.10035880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The autonomous vehicle is the dream project of most of the majestic companies; however, providing a full-fledged autonomous vehicle is very complicated. In this paper, the pedestrian actions are captured using cameras and fine-tuned within a limited amount of time. Certain features of the captured video and their efficient feature descriptors achieve improved accuracy in pedestrian action recognition. The Skeleton based Spatio-Temporal Interest Points (S-STIP) feature is combined with the new interclass discriminative dictionaries. The sparse descriptor is constructed using sparse coding based on orthogonal matching pursuit algorithm and dictionary learning based on Efficient Block Coordinate Descent (EBCD) algorithm. Finally, the sparse descriptor is given as input to the SVM classifier for recognising pedestrian actions. The human action data sets KTH, Weizmann and JAAD are used for experimentation, and the combination of the S-STIP feature and the enhanced sparse descriptor achieves better performance compared to other existing action recognition methods.\",\"PeriodicalId\":39333,\"journal\":{\"name\":\"International Journal of Vehicle Information and Communication Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Information and Communication Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVICS.2021.10035880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Information and Communication Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVICS.2021.10035880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A fine-tuned feature descriptor for pedestrian action recognition in autonomous vehicles
The autonomous vehicle is the dream project of most of the majestic companies; however, providing a full-fledged autonomous vehicle is very complicated. In this paper, the pedestrian actions are captured using cameras and fine-tuned within a limited amount of time. Certain features of the captured video and their efficient feature descriptors achieve improved accuracy in pedestrian action recognition. The Skeleton based Spatio-Temporal Interest Points (S-STIP) feature is combined with the new interclass discriminative dictionaries. The sparse descriptor is constructed using sparse coding based on orthogonal matching pursuit algorithm and dictionary learning based on Efficient Block Coordinate Descent (EBCD) algorithm. Finally, the sparse descriptor is given as input to the SVM classifier for recognising pedestrian actions. The human action data sets KTH, Weizmann and JAAD are used for experimentation, and the combination of the S-STIP feature and the enhanced sparse descriptor achieves better performance compared to other existing action recognition methods.