利用交替参数共轭梯度降低图像脉冲噪声

IF 1 Q1 MATHEMATICS
Hawraz N. Jabbar, Yeldez J. Subhi, Basim A. Hassan
{"title":"利用交替参数共轭梯度降低图像脉冲噪声","authors":"Hawraz N. Jabbar, Yeldez J. Subhi, Basim A. Hassan","doi":"10.29020/nybg.ejpam.v16i3.4849","DOIUrl":null,"url":null,"abstract":"Conjugate gradient approaches emphasise the conjugate formula. This study creates a new conjugate coefficient for the conjugate gradient approach to restore pictures using Perry’s conjugacy condition and a quadratic model. Algorithms have global convergence and descent. The new technique performed better in numerical testing. The new conjugate gradient technique outperforms the FR method. The new technique performed better in numerical testing. The new conjugate gradient technique outperforms the FR method.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Impulse Noise Reduction Using a Conjugate Gradient of Alternative Parameter\",\"authors\":\"Hawraz N. Jabbar, Yeldez J. Subhi, Basim A. Hassan\",\"doi\":\"10.29020/nybg.ejpam.v16i3.4849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conjugate gradient approaches emphasise the conjugate formula. This study creates a new conjugate coefficient for the conjugate gradient approach to restore pictures using Perry’s conjugacy condition and a quadratic model. Algorithms have global convergence and descent. The new technique performed better in numerical testing. The new conjugate gradient technique outperforms the FR method. The new technique performed better in numerical testing. The new conjugate gradient technique outperforms the FR method.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i3.4849\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

共轭梯度法强调共轭公式。本研究使用Perry共轭条件和二次模型为共轭梯度方法恢复图像创建了一个新的共轭系数。算法具有全局收敛性和下降性。这项新技术在数值试验中表现更好。新的共轭梯度技术优于FR方法。这项新技术在数值试验中表现更好。新的共轭梯度技术优于FR方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Impulse Noise Reduction Using a Conjugate Gradient of Alternative Parameter
Conjugate gradient approaches emphasise the conjugate formula. This study creates a new conjugate coefficient for the conjugate gradient approach to restore pictures using Perry’s conjugacy condition and a quadratic model. Algorithms have global convergence and descent. The new technique performed better in numerical testing. The new conjugate gradient technique outperforms the FR method. The new technique performed better in numerical testing. The new conjugate gradient technique outperforms the FR method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信