Meera G. Mohan, Akhilesh Ar, A. S., Badarinadh S, Ajeesh Krishnan, Anand Rajan
{"title":"印度大陆非平稳强度-持续时间-频率关系的水文区划","authors":"Meera G. Mohan, Akhilesh Ar, A. S., Badarinadh S, Ajeesh Krishnan, Anand Rajan","doi":"10.2166/h2oj.2023.023","DOIUrl":null,"url":null,"abstract":"\n \n Intensity–duration–frequency (IDF) curve is one of the important hydrologic tools used for the design of hydraulic infrastructure. The static return period assumption of precipitation extremes is invalid in a changing climate environment, and the underestimation of rainfall intensity may lead to the failure of infrastructure in extreme events. This study first developed the non-stationary (NS) IDF curves for six selected locations in India based on sub-daily station data based on time-dependent estimates of five combinations of Generalized Extreme Value (GEV) distribution parameters. Then, in order to identify the critical regions of rainfall non-stationarity, the IDF curves were developed for 357 grid points over India using the daily gridded data for the period 1951–2016 at 1° × 1° resolution. The comparison of spatial patterns of rainfall intensity estimates under stationary and non-stationary showed that about 23% of grids showed an overestimation of NS rainfall over their stationary counterparts by at least 15%. About 32 grid locations which showed at least 15% overestimation of rainfall under an NS case displayed a significantly increasing rainfall trend. The majority of the grids with larger deviation of non-stationary rainfall estimates over stationary values are located in India's eastern regions and coastal belts.","PeriodicalId":36060,"journal":{"name":"H2Open Journal","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydrologic regionalization of non-stationary intensity–duration–frequency relationships for Indian mainland\",\"authors\":\"Meera G. Mohan, Akhilesh Ar, A. S., Badarinadh S, Ajeesh Krishnan, Anand Rajan\",\"doi\":\"10.2166/h2oj.2023.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Intensity–duration–frequency (IDF) curve is one of the important hydrologic tools used for the design of hydraulic infrastructure. The static return period assumption of precipitation extremes is invalid in a changing climate environment, and the underestimation of rainfall intensity may lead to the failure of infrastructure in extreme events. This study first developed the non-stationary (NS) IDF curves for six selected locations in India based on sub-daily station data based on time-dependent estimates of five combinations of Generalized Extreme Value (GEV) distribution parameters. Then, in order to identify the critical regions of rainfall non-stationarity, the IDF curves were developed for 357 grid points over India using the daily gridded data for the period 1951–2016 at 1° × 1° resolution. The comparison of spatial patterns of rainfall intensity estimates under stationary and non-stationary showed that about 23% of grids showed an overestimation of NS rainfall over their stationary counterparts by at least 15%. About 32 grid locations which showed at least 15% overestimation of rainfall under an NS case displayed a significantly increasing rainfall trend. The majority of the grids with larger deviation of non-stationary rainfall estimates over stationary values are located in India's eastern regions and coastal belts.\",\"PeriodicalId\":36060,\"journal\":{\"name\":\"H2Open Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"H2Open Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/h2oj.2023.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"H2Open Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/h2oj.2023.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Hydrologic regionalization of non-stationary intensity–duration–frequency relationships for Indian mainland
Intensity–duration–frequency (IDF) curve is one of the important hydrologic tools used for the design of hydraulic infrastructure. The static return period assumption of precipitation extremes is invalid in a changing climate environment, and the underestimation of rainfall intensity may lead to the failure of infrastructure in extreme events. This study first developed the non-stationary (NS) IDF curves for six selected locations in India based on sub-daily station data based on time-dependent estimates of five combinations of Generalized Extreme Value (GEV) distribution parameters. Then, in order to identify the critical regions of rainfall non-stationarity, the IDF curves were developed for 357 grid points over India using the daily gridded data for the period 1951–2016 at 1° × 1° resolution. The comparison of spatial patterns of rainfall intensity estimates under stationary and non-stationary showed that about 23% of grids showed an overestimation of NS rainfall over their stationary counterparts by at least 15%. About 32 grid locations which showed at least 15% overestimation of rainfall under an NS case displayed a significantly increasing rainfall trend. The majority of the grids with larger deviation of non-stationary rainfall estimates over stationary values are located in India's eastern regions and coastal belts.