{"title":"HADAMARD型分数阶微分方程序列耦合系统的存在性和稳定性分析","authors":"A. Zada, M. Yar","doi":"10.46793/kgjmat2201.085z","DOIUrl":null,"url":null,"abstract":"In this paper we study existence, uniqueness and Hyers-Ulam stability for a sequential coupled system consisting of fractional differential equations of Hadamard type, subject to nonlocal Hadamard fractional integral boundary conditions. The existence of solutions is derived from Leray-Schauder’s alternative, whereas the uniqueness of solution is established by Banach contraction principle. An example is also presented which illustrate our results.","PeriodicalId":44902,"journal":{"name":"Kragujevac Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXISTENCE AND STABILITY ANALYSIS OF SEQUENTIAL COUPLED SYSTEM OF HADAMARD-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS\",\"authors\":\"A. Zada, M. Yar\",\"doi\":\"10.46793/kgjmat2201.085z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study existence, uniqueness and Hyers-Ulam stability for a sequential coupled system consisting of fractional differential equations of Hadamard type, subject to nonlocal Hadamard fractional integral boundary conditions. The existence of solutions is derived from Leray-Schauder’s alternative, whereas the uniqueness of solution is established by Banach contraction principle. An example is also presented which illustrate our results.\",\"PeriodicalId\":44902,\"journal\":{\"name\":\"Kragujevac Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kragujevac Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46793/kgjmat2201.085z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kragujevac Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/kgjmat2201.085z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
EXISTENCE AND STABILITY ANALYSIS OF SEQUENTIAL COUPLED SYSTEM OF HADAMARD-TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
In this paper we study existence, uniqueness and Hyers-Ulam stability for a sequential coupled system consisting of fractional differential equations of Hadamard type, subject to nonlocal Hadamard fractional integral boundary conditions. The existence of solutions is derived from Leray-Schauder’s alternative, whereas the uniqueness of solution is established by Banach contraction principle. An example is also presented which illustrate our results.