粘性纳米流体在非线性拉伸薄片上的流动

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
P. K. Pattnaik, S. Syed, Sujogya Mishra, S. Jena, Sachindar Kumar Rout, K. Muduli
{"title":"粘性纳米流体在非线性拉伸薄片上的流动","authors":"P. K. Pattnaik, S. Syed, Sujogya Mishra, S. Jena, Sachindar Kumar Rout, K. Muduli","doi":"10.18186/thermal.1296280","DOIUrl":null,"url":null,"abstract":"This article aims to demonstrate the flow of viscous nanofluid over a non-linear stretching sheet. Considering thermal radiation and dissipative heat in the heat transport phenomenon encourages the flow properties. In generally, nanofluids are employed in heat transfer equip-ment because they improve the thermal characteristics of coolants present in the equipment. Additionally, these fluids possess unique features that have the potential to be applied in a variety of applications, such as pharmaceutical procedures, hybrid power engines, household refrigerators, grinding, and microchips, among others. Consequently, the current model is built to allow for the optimal selection of thermophysical parameters such as conductivity and viscosity, which will enhance the overall effectiveness of the study. Appropriate transfor-mation rules have been used to modify the highly non-linear PDEs into a couple of highly non-linear ODEs. An efficient built-in MATLAB bvp5C algorithm addresses the boundary value problem under consideration. Using the dimensionless parameters assumed in the prob-lem, changes in the velocity as well as the temperature profiles are shown, and rate coefficients, by using numerical simulations are also employed in tabular form. The important outcomes which are exposed in the study are; that the particle concentration is used as a controlling pa-rameter to reduce the nanofluid velocity, whereas it favours enhancing the fluid temperature and the radiating heat along with the coupling parameter due to the inclusion of dissipative heat also encourages to overshoot the temperature profile.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow of viscous nanofluids across a non-linear stretching sheet\",\"authors\":\"P. K. Pattnaik, S. Syed, Sujogya Mishra, S. Jena, Sachindar Kumar Rout, K. Muduli\",\"doi\":\"10.18186/thermal.1296280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to demonstrate the flow of viscous nanofluid over a non-linear stretching sheet. Considering thermal radiation and dissipative heat in the heat transport phenomenon encourages the flow properties. In generally, nanofluids are employed in heat transfer equip-ment because they improve the thermal characteristics of coolants present in the equipment. Additionally, these fluids possess unique features that have the potential to be applied in a variety of applications, such as pharmaceutical procedures, hybrid power engines, household refrigerators, grinding, and microchips, among others. Consequently, the current model is built to allow for the optimal selection of thermophysical parameters such as conductivity and viscosity, which will enhance the overall effectiveness of the study. Appropriate transfor-mation rules have been used to modify the highly non-linear PDEs into a couple of highly non-linear ODEs. An efficient built-in MATLAB bvp5C algorithm addresses the boundary value problem under consideration. Using the dimensionless parameters assumed in the prob-lem, changes in the velocity as well as the temperature profiles are shown, and rate coefficients, by using numerical simulations are also employed in tabular form. The important outcomes which are exposed in the study are; that the particle concentration is used as a controlling pa-rameter to reduce the nanofluid velocity, whereas it favours enhancing the fluid temperature and the radiating heat along with the coupling parameter due to the inclusion of dissipative heat also encourages to overshoot the temperature profile.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1296280\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1296280","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在演示粘性纳米流体在非线性拉伸片上的流动。考虑了热辐射和耗散热的传热现象,促进了流体的流动特性。一般来说,纳米流体被用于传热设备,因为它们改善了设备中存在的冷却剂的热特性。此外,这些流体具有独特的特性,具有应用于各种应用的潜力,例如制药程序、混合动力发动机、家用冰箱、研磨和微芯片等。因此,建立当前模型是为了允许热物性参数(如导电性和粘度)的最佳选择,这将提高研究的整体有效性。利用适当的转换规则将高度非线性的偏微分方程转化为一对高度非线性的偏微分方程。一种高效的内置MATLAB bvp5C算法解决了所考虑的边值问题。利用问题中假设的无量纲参数,给出了速度和温度的变化曲线,并通过数值模拟得到了速率系数的表格形式。研究中暴露的重要结果是;颗粒浓度作为控制参数,降低了纳米流体的速度,但由于包含了耗散热,它有利于提高流体温度和辐射热量以及耦合参数,也导致了温度曲线的超调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow of viscous nanofluids across a non-linear stretching sheet
This article aims to demonstrate the flow of viscous nanofluid over a non-linear stretching sheet. Considering thermal radiation and dissipative heat in the heat transport phenomenon encourages the flow properties. In generally, nanofluids are employed in heat transfer equip-ment because they improve the thermal characteristics of coolants present in the equipment. Additionally, these fluids possess unique features that have the potential to be applied in a variety of applications, such as pharmaceutical procedures, hybrid power engines, household refrigerators, grinding, and microchips, among others. Consequently, the current model is built to allow for the optimal selection of thermophysical parameters such as conductivity and viscosity, which will enhance the overall effectiveness of the study. Appropriate transfor-mation rules have been used to modify the highly non-linear PDEs into a couple of highly non-linear ODEs. An efficient built-in MATLAB bvp5C algorithm addresses the boundary value problem under consideration. Using the dimensionless parameters assumed in the prob-lem, changes in the velocity as well as the temperature profiles are shown, and rate coefficients, by using numerical simulations are also employed in tabular form. The important outcomes which are exposed in the study are; that the particle concentration is used as a controlling pa-rameter to reduce the nanofluid velocity, whereas it favours enhancing the fluid temperature and the radiating heat along with the coupling parameter due to the inclusion of dissipative heat also encourages to overshoot the temperature profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信