用调制转移光谱法稳定二极管激光器对分子碘参考跃迁的频率

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Atoms Pub Date : 2023-05-12 DOI:10.3390/atoms11050083
L. Sharma, A. Roy, S. Panja, S. De
{"title":"用调制转移光谱法稳定二极管激光器对分子碘参考跃迁的频率","authors":"L. Sharma, A. Roy, S. Panja, S. De","doi":"10.3390/atoms11050083","DOIUrl":null,"url":null,"abstract":"We report the frequency stabilization of an external cavity diode laser (ECDL) to a reference molecular iodine (I2) transition at 13,531.18 cm−1 (739.03382 nm). Using the Modulation Transfer Spectroscopy (MTS) method for the highly sensitive detection of weak absorption signals, the Doppler-free absorption peaks of I2 corresponding to the hot band transition R(78) (1–11) are resolved. The ECDL’s frequency is stabilized with respect to one of the lines lying within the reference absorption band. For this, the iodine vapor cell is heated to 450 °C and the corresponding circularly polarized pump and probe beam powers are maintained at 10 mW and 1 mW, respectively, to avoid power broadening. The short (100 ms) and long-term (50 h) linewidths of the frequency stabilized laser are measured to be 0.75(3) MHz and 0.5(2) MHz, respectively, whereas the natural linewidth of the specific I2-transitions lie within a range of tens of MHz.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stabilizing Frequency of a Diode Laser to a Reference Transition of Molecular Iodine through Modulation Transfer Spectroscopy\",\"authors\":\"L. Sharma, A. Roy, S. Panja, S. De\",\"doi\":\"10.3390/atoms11050083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the frequency stabilization of an external cavity diode laser (ECDL) to a reference molecular iodine (I2) transition at 13,531.18 cm−1 (739.03382 nm). Using the Modulation Transfer Spectroscopy (MTS) method for the highly sensitive detection of weak absorption signals, the Doppler-free absorption peaks of I2 corresponding to the hot band transition R(78) (1–11) are resolved. The ECDL’s frequency is stabilized with respect to one of the lines lying within the reference absorption band. For this, the iodine vapor cell is heated to 450 °C and the corresponding circularly polarized pump and probe beam powers are maintained at 10 mW and 1 mW, respectively, to avoid power broadening. The short (100 ms) and long-term (50 h) linewidths of the frequency stabilized laser are measured to be 0.75(3) MHz and 0.5(2) MHz, respectively, whereas the natural linewidth of the specific I2-transitions lie within a range of tens of MHz.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11050083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11050083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 1

摘要

我们报道了外腔二极管激光器(ECDL)在13531.18 cm-1(739.03382 nm)处对参考分子碘(I2)跃迁的频率稳定。使用调制转移光谱(MTS)方法对弱吸收信号进行高灵敏度检测,解析了对应于热带跃迁R(78)(1-11)的I2的无多普勒吸收峰。ECDL的频率相对于位于参考吸收带内的一条线是稳定的。为此,将碘蒸气池加热至450°C,并将相应的圆偏振泵浦和探测光束功率分别保持在10mW和1mW,以避免功率加宽。测得频率稳定激光器的短(100ms)和长(50H)线宽分别为0.75(3)MHz和0.5(2)MHz,而特定I2跃迁的自然线宽在几十MHz的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing Frequency of a Diode Laser to a Reference Transition of Molecular Iodine through Modulation Transfer Spectroscopy
We report the frequency stabilization of an external cavity diode laser (ECDL) to a reference molecular iodine (I2) transition at 13,531.18 cm−1 (739.03382 nm). Using the Modulation Transfer Spectroscopy (MTS) method for the highly sensitive detection of weak absorption signals, the Doppler-free absorption peaks of I2 corresponding to the hot band transition R(78) (1–11) are resolved. The ECDL’s frequency is stabilized with respect to one of the lines lying within the reference absorption band. For this, the iodine vapor cell is heated to 450 °C and the corresponding circularly polarized pump and probe beam powers are maintained at 10 mW and 1 mW, respectively, to avoid power broadening. The short (100 ms) and long-term (50 h) linewidths of the frequency stabilized laser are measured to be 0.75(3) MHz and 0.5(2) MHz, respectively, whereas the natural linewidth of the specific I2-transitions lie within a range of tens of MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信