有限阿贝尔群的非全秩因子分解

K. Amin
{"title":"有限阿贝尔群的非全秩因子分解","authors":"K. Amin","doi":"10.4236/OJDM.2017.72005","DOIUrl":null,"url":null,"abstract":"Tilings of p-groups are closely associated with error-correcting codes. In [1], M. Dinitz, attempting to generalize full-rank tilings of  Zn2  to arbitrary finite abelian groups, was able to show that if p ≥5, then Znp  admits full-rank tiling and left the case p=3, as an open question. The result proved in this paper the settles of the question for the case p=3.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"07 1","pages":"720-726"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Full Rank Factorization of Finite Abelian Groups\",\"authors\":\"K. Amin\",\"doi\":\"10.4236/OJDM.2017.72005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tilings of p-groups are closely associated with error-correcting codes. In [1], M. Dinitz, attempting to generalize full-rank tilings of  Zn2  to arbitrary finite abelian groups, was able to show that if p ≥5, then Znp  admits full-rank tiling and left the case p=3, as an open question. The result proved in this paper the settles of the question for the case p=3.\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\"07 1\",\"pages\":\"720-726\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJDM.2017.72005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2017.72005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

p群的平铺与纠错码密切相关。在[1]中,M. Dinitz试图将Zn2的满秩平铺推广到任意有限阿贝群,证明了如果p≥5,则Znp允许满秩平铺,并将p=3的情况留作一个开放问题。结果证明了在p=3的情况下问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Full Rank Factorization of Finite Abelian Groups
Tilings of p-groups are closely associated with error-correcting codes. In [1], M. Dinitz, attempting to generalize full-rank tilings of  Zn2  to arbitrary finite abelian groups, was able to show that if p ≥5, then Znp  admits full-rank tiling and left the case p=3, as an open question. The result proved in this paper the settles of the question for the case p=3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信