简单可约群的例子

Pub Date : 2020-09-01 DOI:10.4134/JKMS.J190625
Yongzhi Luan
{"title":"简单可约群的例子","authors":"Yongzhi Luan","doi":"10.4134/JKMS.J190625","DOIUrl":null,"url":null,"abstract":"Simply reducible groups are important in physics and chemistry, which contain some of the important groups in condensed matter physics and crystal symmetry. By studying the group structures and irreducible representations, we find some new examples of simply reducible groups, namely, dihedral groups, some point groups, some dicyclic groups, generalized quaternion groups, Heisenberg groups over prime field of characteristic 2, some Clifford groups, and some Coxeter groups. We give the precise decompositions of product of irreducible characters of dihedral groups, Heisenberg groups, and some Coxeter groups, giving the ClebschGordan coefficients for these groups. To verify some of our results, we use the computer algebra systems GAP and SAGE to construct and get the character tables of some examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examples of simply reducible groups\",\"authors\":\"Yongzhi Luan\",\"doi\":\"10.4134/JKMS.J190625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simply reducible groups are important in physics and chemistry, which contain some of the important groups in condensed matter physics and crystal symmetry. By studying the group structures and irreducible representations, we find some new examples of simply reducible groups, namely, dihedral groups, some point groups, some dicyclic groups, generalized quaternion groups, Heisenberg groups over prime field of characteristic 2, some Clifford groups, and some Coxeter groups. We give the precise decompositions of product of irreducible characters of dihedral groups, Heisenberg groups, and some Coxeter groups, giving the ClebschGordan coefficients for these groups. To verify some of our results, we use the computer algebra systems GAP and SAGE to construct and get the character tables of some examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4134/JKMS.J190625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4134/JKMS.J190625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

简单可约群在物理学和化学中很重要,它包含了凝聚态物理学和晶体对称性中的一些重要群。通过研究群结构和不可约表示,我们发现了一些简单可约群的新例子,即二面体群、一些点群、一些双环群、广义四元数群、特征2素数域上的海森堡群、一些Clifford群和一些Coxeter群。我们给出了二面体群、Heisenberg群和一些Coxeter群的不可约特征乘积的精确分解,给出了这些群的Clebsch-Gordan系数。为了验证我们的一些结果,我们使用计算机代数系统GAP和SAGE来构造和获得一些例子的字符表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Examples of simply reducible groups
Simply reducible groups are important in physics and chemistry, which contain some of the important groups in condensed matter physics and crystal symmetry. By studying the group structures and irreducible representations, we find some new examples of simply reducible groups, namely, dihedral groups, some point groups, some dicyclic groups, generalized quaternion groups, Heisenberg groups over prime field of characteristic 2, some Clifford groups, and some Coxeter groups. We give the precise decompositions of product of irreducible characters of dihedral groups, Heisenberg groups, and some Coxeter groups, giving the ClebschGordan coefficients for these groups. To verify some of our results, we use the computer algebra systems GAP and SAGE to construct and get the character tables of some examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信