好氧细菌降解污染土壤中过期农药的改良条件

IF 3.5 Q2 ENVIRONMENTAL SCIENCES
T. Doolotkeldieva, S. Bobusheva, Mahabat Konurbaeva
{"title":"好氧细菌降解污染土壤中过期农药的改良条件","authors":"T. Doolotkeldieva, S. Bobusheva, Mahabat Konurbaeva","doi":"10.1177/1178622120982590","DOIUrl":null,"url":null,"abstract":"Currently, in the territory of Kyrgyzstan, 50 storage facilities of obsolete pesticides exist; they store about 5000 tons of these hazardous chemicals. The storage conditions have become unusable for a long time. They pose a serious threat to the people living there, livestock, and the environment. The main purpose of this research was the use of selected bacteria with cytochrome P450 genes for the bioremediation of polluted soils around the burial sites in model soil experiments. In the first trial of biodegradation experiments, one contaminated soil was used without any changes in chemical contents, and in the second, the physical and chemical contents of the soil were improved to maintain the bioremediation conditions. The soils in both variants were treated 3 times (ie, once a month) with suspensions of a single culture or a blend of active bacteria (1 × 108 cells/mL) selected from in vitro biodegradation experiments. Two control units without the addition of the bacteria culture were also run. The quantification of targeted persistent organic pollutants (POPs) before and after biodegradation was performed by capillary gas chromatography (GC) coupled to a mass spectrometer. In 6 months, obsolete pesticides such as dieldrin, α-endosulfan, β-endosulfan, and 4-heptachlor-epox pure were able to degrade almost completely, up to 98% to 99.0%, by the blend of bacteria and the single culture of bacteria. Endrin aldehyde showed more resistance as the blend of bacteria was able to degrade it to 59.77%. To improve the aerobic degradation for elimination of pesticides from contaminated soils, it is necessary to create optimal agrotechnical and agrochemical conditions.","PeriodicalId":44801,"journal":{"name":"Air Soil and Water Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178622120982590","citationCount":"7","resultStr":"{\"title\":\"The Improving Conditions for the Aerobic Bacteria Performing the Degradation of Obsolete Pesticides in Polluted Soils\",\"authors\":\"T. Doolotkeldieva, S. Bobusheva, Mahabat Konurbaeva\",\"doi\":\"10.1177/1178622120982590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, in the territory of Kyrgyzstan, 50 storage facilities of obsolete pesticides exist; they store about 5000 tons of these hazardous chemicals. The storage conditions have become unusable for a long time. They pose a serious threat to the people living there, livestock, and the environment. The main purpose of this research was the use of selected bacteria with cytochrome P450 genes for the bioremediation of polluted soils around the burial sites in model soil experiments. In the first trial of biodegradation experiments, one contaminated soil was used without any changes in chemical contents, and in the second, the physical and chemical contents of the soil were improved to maintain the bioremediation conditions. The soils in both variants were treated 3 times (ie, once a month) with suspensions of a single culture or a blend of active bacteria (1 × 108 cells/mL) selected from in vitro biodegradation experiments. Two control units without the addition of the bacteria culture were also run. The quantification of targeted persistent organic pollutants (POPs) before and after biodegradation was performed by capillary gas chromatography (GC) coupled to a mass spectrometer. In 6 months, obsolete pesticides such as dieldrin, α-endosulfan, β-endosulfan, and 4-heptachlor-epox pure were able to degrade almost completely, up to 98% to 99.0%, by the blend of bacteria and the single culture of bacteria. Endrin aldehyde showed more resistance as the blend of bacteria was able to degrade it to 59.77%. To improve the aerobic degradation for elimination of pesticides from contaminated soils, it is necessary to create optimal agrotechnical and agrochemical conditions.\",\"PeriodicalId\":44801,\"journal\":{\"name\":\"Air Soil and Water Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1178622120982590\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Soil and Water Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/1178622120982590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Soil and Water Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1178622120982590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 7

摘要

目前,吉尔吉斯斯坦境内有50个废弃农药储存设施;他们储存了大约5000吨这种危险化学品。储存条件已变得无法使用很长一段时间。它们对生活在那里的人们、牲畜和环境构成严重威胁。本研究的主要目的是在模型土壤实验中,使用选定的具有细胞色素P450基因的细菌对埋葬地点周围的污染土壤进行生物修复。在生物降解实验的第一次试验中,使用了一种化学含量没有任何变化的污染土壤,在第二次试验中提高了土壤的物理和化学含量,以保持生物修复条件。两种变体的土壤都用单一培养物或活性细菌混合物的悬浮液处理3次(即每月一次)(1 × 108个细胞/mL)。还运行了两个没有添加细菌培养物的对照单元。生物降解前后目标持久性有机污染物的定量通过毛细管气相色谱(GC)与质谱仪相结合进行。在6 几个月后,狄氏剂、α-硫丹、β-硫丹和4-庚氯-天花纯等废弃农药通过细菌混合和单一细菌培养几乎完全降解,降解率高达98%至99.0%。Endrin醛表现出更强的抗性,因为细菌的混合物能够将其降解至59.77%。为了改善好氧降解以消除污染土壤中的农药,有必要创造最佳的农业技术和农业化学条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Improving Conditions for the Aerobic Bacteria Performing the Degradation of Obsolete Pesticides in Polluted Soils
Currently, in the territory of Kyrgyzstan, 50 storage facilities of obsolete pesticides exist; they store about 5000 tons of these hazardous chemicals. The storage conditions have become unusable for a long time. They pose a serious threat to the people living there, livestock, and the environment. The main purpose of this research was the use of selected bacteria with cytochrome P450 genes for the bioremediation of polluted soils around the burial sites in model soil experiments. In the first trial of biodegradation experiments, one contaminated soil was used without any changes in chemical contents, and in the second, the physical and chemical contents of the soil were improved to maintain the bioremediation conditions. The soils in both variants were treated 3 times (ie, once a month) with suspensions of a single culture or a blend of active bacteria (1 × 108 cells/mL) selected from in vitro biodegradation experiments. Two control units without the addition of the bacteria culture were also run. The quantification of targeted persistent organic pollutants (POPs) before and after biodegradation was performed by capillary gas chromatography (GC) coupled to a mass spectrometer. In 6 months, obsolete pesticides such as dieldrin, α-endosulfan, β-endosulfan, and 4-heptachlor-epox pure were able to degrade almost completely, up to 98% to 99.0%, by the blend of bacteria and the single culture of bacteria. Endrin aldehyde showed more resistance as the blend of bacteria was able to degrade it to 59.77%. To improve the aerobic degradation for elimination of pesticides from contaminated soils, it is necessary to create optimal agrotechnical and agrochemical conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Air Soil and Water Research
Air Soil and Water Research ENVIRONMENTAL SCIENCES-
CiteScore
7.80
自引率
5.30%
发文量
27
审稿时长
8 weeks
期刊介绍: Air, Soil & Water Research is an open access, peer reviewed international journal covering all areas of research into soil, air and water. The journal looks at each aspect individually, as well as how they interact, with each other and different components of the environment. This includes properties (including physical, chemical, biochemical and biological), analysis, microbiology, chemicals and pollution, consequences for plants and crops, soil hydrology, changes and consequences of change, social issues, and more. The journal welcomes readerships from all fields, but hopes to be particularly profitable to analytical and water chemists and geologists as well as chemical, environmental, petrochemical, water treatment, geophysics and geological engineers. The journal has a multi-disciplinary approach and includes research, results, theory, models, analysis, applications and reviews. Work in lab or field is applicable. Of particular interest are manuscripts relating to environmental concerns. Other possible topics include, but are not limited to: Properties and analysis covering all areas of research into soil, air and water individually as well as how they interact with each other and different components of the environment Soil hydrology and microbiology Changes and consequences of environmental change, chemicals and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信