具有双次线性吸收的非线性吸引-排斥Keller-Segel模型:有界性准则

IF 1 3区 数学 Q1 MATHEMATICS
Yutaro Chiyo, Silvia Frassu, G. Viglialoro
{"title":"具有双次线性吸收的非线性吸引-排斥Keller-Segel模型:有界性准则","authors":"Yutaro Chiyo, Silvia Frassu, G. Viglialoro","doi":"10.3934/cpaa.2023047","DOIUrl":null,"url":null,"abstract":"This paper generalizes and extends to the case of nonlinear effects and logistic perturbations some results recently developed in the literature where, for the linear counterpart and in absence of logistics, criteria toward boundedness for an attraction-repulsion Keller-Segel system with double saturation are derived.","PeriodicalId":10643,"journal":{"name":"Communications on Pure and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A nonlinear attraction-repulsion Keller–Segel model with double sublinear absorptions: criteria toward boundedness\",\"authors\":\"Yutaro Chiyo, Silvia Frassu, G. Viglialoro\",\"doi\":\"10.3934/cpaa.2023047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper generalizes and extends to the case of nonlinear effects and logistic perturbations some results recently developed in the literature where, for the linear counterpart and in absence of logistics, criteria toward boundedness for an attraction-repulsion Keller-Segel system with double saturation are derived.\",\"PeriodicalId\":10643,\"journal\":{\"name\":\"Communications on Pure and Applied Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2023047\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/cpaa.2023047","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文将文献中最近发展的一些结果推广到非线性效应和logistic扰动的情况,其中,对于线性对应物和不存在logistic,导出了具有双重饱和的吸引-排斥Keller-Segel系统的有界性准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nonlinear attraction-repulsion Keller–Segel model with double sublinear absorptions: criteria toward boundedness
This paper generalizes and extends to the case of nonlinear effects and logistic perturbations some results recently developed in the literature where, for the linear counterpart and in absence of logistics, criteria toward boundedness for an attraction-repulsion Keller-Segel system with double saturation are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: CPAA publishes original research papers of the highest quality in all the major areas of analysis and its applications, with a central theme on theoretical and numeric differential equations. Invited expository articles are also published from time to time. It is edited by a group of energetic leaders to guarantee the journal''s highest standard and closest link to the scientific communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信