Christopher A. Trinies, A. Bunn, C. Robertson, K. Anchukaitis
{"title":"1333 - 2015年美国华盛顿州北喀斯喀特山脉西坡黄杉的树木气候学与温度变化","authors":"Christopher A. Trinies, A. Bunn, C. Robertson, K. Anchukaitis","doi":"10.3959/2021-20","DOIUrl":null,"url":null,"abstract":"ABSTRACT Long-term paleoclimate reconstructions of temperature provide context for the magnitude of recent anthropogenic warming, help quantify the climate response to radiative forcing, and better characterize the range of natural variability. In North America, temperature-sensitive tree-ring proxy data remain sparse, which limits the spatial and temporal extent of these reconstructions. Here we present an analysis of yellow-cedar (Callitropsis nootkatensis) growth in Washington State (USA) and its relationship to climate. Combining empirical statistical analysis with a process model of xylogenesis, we show that tree-ring chronologies from three high-elevation sites in the North Cascades are primarily controlled by temperature. We then use these chronologies to reconstruct summer temperatures over the period 1333 to 2015 CE, adding a new proxy to the North American network of temperature-sensitive trees. Comparison with an existing large-scale spatial gridded reconstruction suggests this species offers important local and regional information on past temperatures.","PeriodicalId":54416,"journal":{"name":"Tree-Ring Research","volume":"78 1","pages":"113 - 128"},"PeriodicalIF":1.1000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dendroclimatology of Yellow-Cedar (Callitropsis nootkatensis) and Temperature Variability on the Western Slopes of the North Cascades in Washington State, USA, from 1333 to 2015 CE\",\"authors\":\"Christopher A. Trinies, A. Bunn, C. Robertson, K. Anchukaitis\",\"doi\":\"10.3959/2021-20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Long-term paleoclimate reconstructions of temperature provide context for the magnitude of recent anthropogenic warming, help quantify the climate response to radiative forcing, and better characterize the range of natural variability. In North America, temperature-sensitive tree-ring proxy data remain sparse, which limits the spatial and temporal extent of these reconstructions. Here we present an analysis of yellow-cedar (Callitropsis nootkatensis) growth in Washington State (USA) and its relationship to climate. Combining empirical statistical analysis with a process model of xylogenesis, we show that tree-ring chronologies from three high-elevation sites in the North Cascades are primarily controlled by temperature. We then use these chronologies to reconstruct summer temperatures over the period 1333 to 2015 CE, adding a new proxy to the North American network of temperature-sensitive trees. Comparison with an existing large-scale spatial gridded reconstruction suggests this species offers important local and regional information on past temperatures.\",\"PeriodicalId\":54416,\"journal\":{\"name\":\"Tree-Ring Research\",\"volume\":\"78 1\",\"pages\":\"113 - 128\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree-Ring Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3959/2021-20\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree-Ring Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3959/2021-20","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FORESTRY","Score":null,"Total":0}
Dendroclimatology of Yellow-Cedar (Callitropsis nootkatensis) and Temperature Variability on the Western Slopes of the North Cascades in Washington State, USA, from 1333 to 2015 CE
ABSTRACT Long-term paleoclimate reconstructions of temperature provide context for the magnitude of recent anthropogenic warming, help quantify the climate response to radiative forcing, and better characterize the range of natural variability. In North America, temperature-sensitive tree-ring proxy data remain sparse, which limits the spatial and temporal extent of these reconstructions. Here we present an analysis of yellow-cedar (Callitropsis nootkatensis) growth in Washington State (USA) and its relationship to climate. Combining empirical statistical analysis with a process model of xylogenesis, we show that tree-ring chronologies from three high-elevation sites in the North Cascades are primarily controlled by temperature. We then use these chronologies to reconstruct summer temperatures over the period 1333 to 2015 CE, adding a new proxy to the North American network of temperature-sensitive trees. Comparison with an existing large-scale spatial gridded reconstruction suggests this species offers important local and regional information on past temperatures.
期刊介绍:
Tree-Ring Research (TRR) is devoted to papers dealing with the growth rings of trees and the applications of tree-ring research in a wide variety of fields, including but not limited to archaeology, geology, ecology, hydrology, climatology, forestry, and botany. Papers involving research results, new techniques of data acquisition or analysis, and regional or subject-oriented reviews or syntheses are considered for publication.
Scientific papers usually fall into two main categories. Articles should not exceed 5000 words, or approximately 20 double-spaced typewritten pages, including tables, references, and an abstract of 200 words or fewer. All manuscripts submitted as Articles are reviewed by at least two referees. Research Reports, which are usually reviewed by at least one outside referee, should not exceed 1500 words or include more than two figures. Research Reports address technical developments, describe well-documented but preliminary research results, or present findings for which the Article format is not appropriate. Book or monograph Reviews of 500 words or less are also considered. Other categories of papers are occasionally published. All papers are published only in English. Abstracts of the Articles or Reports may be printed in other languages if supplied by the author(s) with English translations.