{"title":"基于装箱的超级PON离线动态带宽和波长分配算法","authors":"Sukriti Garg, A. Dixit","doi":"10.1364/OSAC.430997","DOIUrl":null,"url":null,"abstract":"Enduring the rapidly growing demand for high data rates is the main challenge for the current network providers. Super passive optical network (Super-PON), a prominent next generation Ethernet PON (NG-EPON) candidate, can suffice this exponentially increasing data rate requirements. However, to appease such requirements, it employs many transceivers and increases the power-consumption of the network. In this work, we focus on reducing the carbon footprint of Super-PON and propose power-efficient dynamic bandwidth and wavelength allocation (DBWA) algorithms, namely best fit bin-packing sleep mode aware (BF-SMA) and updated BF-SMA (UBF-SMA). The proposed algorithms use SMA for bandwidth scheduling and different bin-packing techniques for wavelength allocation. In bin-packing, the number of available wavelengths and their efficient allocation is based on the network load. For restricting the number of available wavelengths, we can switch off the non-essential transceivers at the OLT, which also helps in maximizing the wavelength utilization and increasing the power efficiency. The simulation results show that in comparison to the state-of-the-art DBWA algorithms, the proposed algorithms improve the power efficiency and reduce the average delay of a Super-PON system. Furthermore, we use Jain’s fairness index to validate the fairness of the proposed DBWA algorithms.","PeriodicalId":19750,"journal":{"name":"OSA Continuum","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bin-Packing Based Offline Dynamic Bandwidth and Wavelength Allocation Algorithms for Power Efficiency in Super-PON\",\"authors\":\"Sukriti Garg, A. Dixit\",\"doi\":\"10.1364/OSAC.430997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enduring the rapidly growing demand for high data rates is the main challenge for the current network providers. Super passive optical network (Super-PON), a prominent next generation Ethernet PON (NG-EPON) candidate, can suffice this exponentially increasing data rate requirements. However, to appease such requirements, it employs many transceivers and increases the power-consumption of the network. In this work, we focus on reducing the carbon footprint of Super-PON and propose power-efficient dynamic bandwidth and wavelength allocation (DBWA) algorithms, namely best fit bin-packing sleep mode aware (BF-SMA) and updated BF-SMA (UBF-SMA). The proposed algorithms use SMA for bandwidth scheduling and different bin-packing techniques for wavelength allocation. In bin-packing, the number of available wavelengths and their efficient allocation is based on the network load. For restricting the number of available wavelengths, we can switch off the non-essential transceivers at the OLT, which also helps in maximizing the wavelength utilization and increasing the power efficiency. The simulation results show that in comparison to the state-of-the-art DBWA algorithms, the proposed algorithms improve the power efficiency and reduce the average delay of a Super-PON system. Furthermore, we use Jain’s fairness index to validate the fairness of the proposed DBWA algorithms.\",\"PeriodicalId\":19750,\"journal\":{\"name\":\"OSA Continuum\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OSA Continuum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/OSAC.430997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OSA Continuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/OSAC.430997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Bin-Packing Based Offline Dynamic Bandwidth and Wavelength Allocation Algorithms for Power Efficiency in Super-PON
Enduring the rapidly growing demand for high data rates is the main challenge for the current network providers. Super passive optical network (Super-PON), a prominent next generation Ethernet PON (NG-EPON) candidate, can suffice this exponentially increasing data rate requirements. However, to appease such requirements, it employs many transceivers and increases the power-consumption of the network. In this work, we focus on reducing the carbon footprint of Super-PON and propose power-efficient dynamic bandwidth and wavelength allocation (DBWA) algorithms, namely best fit bin-packing sleep mode aware (BF-SMA) and updated BF-SMA (UBF-SMA). The proposed algorithms use SMA for bandwidth scheduling and different bin-packing techniques for wavelength allocation. In bin-packing, the number of available wavelengths and their efficient allocation is based on the network load. For restricting the number of available wavelengths, we can switch off the non-essential transceivers at the OLT, which also helps in maximizing the wavelength utilization and increasing the power efficiency. The simulation results show that in comparison to the state-of-the-art DBWA algorithms, the proposed algorithms improve the power efficiency and reduce the average delay of a Super-PON system. Furthermore, we use Jain’s fairness index to validate the fairness of the proposed DBWA algorithms.