可行性泵的多参考向量和目标标度

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Gioni Mexi , Timo Berthold , Domenico Salvagnin
{"title":"可行性泵的多参考向量和目标标度","authors":"Gioni Mexi ,&nbsp;Timo Berthold ,&nbsp;Domenico Salvagnin","doi":"10.1016/j.ejco.2023.100066","DOIUrl":null,"url":null,"abstract":"<div><p>The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage, a procedure we refer to as mRENS. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective.</p><p>Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3% solution quality improvement and 4.0% running time improvement in an embedded setting, needing 16.0% fewer iterations over a large test set of MIP instances. In addition, the method's success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100066"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using multiple reference vectors and objective scaling in the Feasibility Pump\",\"authors\":\"Gioni Mexi ,&nbsp;Timo Berthold ,&nbsp;Domenico Salvagnin\",\"doi\":\"10.1016/j.ejco.2023.100066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage, a procedure we refer to as mRENS. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective.</p><p>Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3% solution quality improvement and 4.0% running time improvement in an embedded setting, needing 16.0% fewer iterations over a large test set of MIP instances. In addition, the method's success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"11 \",\"pages\":\"Article 100066\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440623000102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440623000102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

可行性泵(FP)是最著名的混合整数规划(MIP)的原始启发式方法之一:超过15篇论文建议对其所有步骤进行各种修改。到目前为止,没有变体考虑跨多个迭代的信息,但是所有变体都维护了朝着单个引用整数点进行优化的原则。在本文中,我们评估了在FP算法的所有阶段中多个参考向量的使用。特别是,在进入计算代价高昂的枚举阶段之前,我们使用主循环期间获得的lp可行向量来收紧变量域,我们将此过程称为mRENS。此外,我们考虑多个整数参考向量来探索进一步优化方向,并引入替代目标缩放项来平衡距离函数和原始MIP目标的贡献。我们的计算实验表明,新方法可以提高一般MIP测试集的性能。详细地说,我们的修改在嵌入式设置中提供了29.3%的解决方案质量改进和4.0%的运行时间改进,在MIP实例的大型测试集上需要减少16.0%的迭代。此外,该方法的成功率在最初的几个迭代中显著增加。在独立设置中,我们还观察到适度的性能改进,这使得我们的FP版本适合该算法的两个主要用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using multiple reference vectors and objective scaling in the Feasibility Pump

The Feasibility Pump (FP) is one of the best-known primal heuristics for mixed-integer programming (MIP): more than 15 papers suggested various modifications of all of its steps. So far, no variant considered information across multiple iterations, but all instead maintained the principle to optimize towards a single reference integer point. In this paper, we evaluate the usage of multiple reference vectors in all stages of the FP algorithm. In particular, we use LP-feasible vectors obtained during the main loop to tighten the variable domains before entering the computationally expensive enumeration stage, a procedure we refer to as mRENS. Moreover, we consider multiple integer reference vectors to explore further optimizing directions and introduce alternative objective scaling terms to balance the contributions of the distance functions and the original MIP objective.

Our computational experiments demonstrate that the new method can improve performance on general MIP test sets. In detail, our modifications provide a 29.3% solution quality improvement and 4.0% running time improvement in an embedded setting, needing 16.0% fewer iterations over a large test set of MIP instances. In addition, the method's success rate increases considerably within the first few iterations. In a standalone setting, we also observe a moderate performance improvement, which makes our version of FP suitable for the two main use-cases of the algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信