{"title":"在磁场作用下,变粘度流体的自然对流和从加热的垂直波浪表面上的粘性耗散","authors":"N. Parveen, M. Alim","doi":"10.3329/JNAME.V17I2.45674","DOIUrl":null,"url":null,"abstract":"ABSTRACT \n \nThe present numerical work describes the effect of the temperature dependent variable viscosity and viscous dissipation on natural convection heat transfer boundary layer flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface in presence of a transverse magnetic field. The wavy surface is maintained at uniform wall temperature that is higher than that of the ambient. A simple coordinate transformation is employed to transform the wavy surface into a flat plate. A marching finite difference scheme is used for present analysis. The numerical results, including the developments of the skin friction coefficients, the local Nusselt number, the streamlines as well as the isotherms are presented and discussed in detail. The results of this investigation illustrated that the skin friction coefficient increase with an increase of the variable viscosity and viscous dissipation parameter, while the local Nusselt number at the heated surface decrease with increasing values of variable viscosity, intensity of magnetic field and viscous dissipation parameter.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Natural convection of fluid with variable viscosity and viscous dissipation from a heated vertical wavy surface in presence of magnetic field\",\"authors\":\"N. Parveen, M. Alim\",\"doi\":\"10.3329/JNAME.V17I2.45674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT \\n \\nThe present numerical work describes the effect of the temperature dependent variable viscosity and viscous dissipation on natural convection heat transfer boundary layer flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface in presence of a transverse magnetic field. The wavy surface is maintained at uniform wall temperature that is higher than that of the ambient. A simple coordinate transformation is employed to transform the wavy surface into a flat plate. A marching finite difference scheme is used for present analysis. The numerical results, including the developments of the skin friction coefficients, the local Nusselt number, the streamlines as well as the isotherms are presented and discussed in detail. The results of this investigation illustrated that the skin friction coefficient increase with an increase of the variable viscosity and viscous dissipation parameter, while the local Nusselt number at the heated surface decrease with increasing values of variable viscosity, intensity of magnetic field and viscous dissipation parameter.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/JNAME.V17I2.45674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V17I2.45674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Natural convection of fluid with variable viscosity and viscous dissipation from a heated vertical wavy surface in presence of magnetic field
ABSTRACT
The present numerical work describes the effect of the temperature dependent variable viscosity and viscous dissipation on natural convection heat transfer boundary layer flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface in presence of a transverse magnetic field. The wavy surface is maintained at uniform wall temperature that is higher than that of the ambient. A simple coordinate transformation is employed to transform the wavy surface into a flat plate. A marching finite difference scheme is used for present analysis. The numerical results, including the developments of the skin friction coefficients, the local Nusselt number, the streamlines as well as the isotherms are presented and discussed in detail. The results of this investigation illustrated that the skin friction coefficient increase with an increase of the variable viscosity and viscous dissipation parameter, while the local Nusselt number at the heated surface decrease with increasing values of variable viscosity, intensity of magnetic field and viscous dissipation parameter.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.