韦尔-彼得森度规的大尺度秩和刚性

Pub Date : 2020-06-22 DOI:10.4171/GGD/557
B. Bowditch
{"title":"韦尔-彼得森度规的大尺度秩和刚性","authors":"B. Bowditch","doi":"10.4171/GGD/557","DOIUrl":null,"url":null,"abstract":"We study the large-scale geometry of Weil-Petersson space, that is, Teichmüller space equipped with the Weil-Petersson metric. We show that this admits a natural coarse median structure of a specific rank. Given that this is equal to the maximal dimension of a quasi-isometrically embedded euclidean space, we recover a result of Eskin, Masur and Rafi which gives the coarse rank of the space. We go on to show that, apart from finitely many cases, the WeilPetersson spaces are quasi-isometrically distinct, and quasi-isometrically rigid. In particular, any quasi-isometry between such spaces is a bounded distance from an isometry. By a theorem of Brock, Weil-Petersson space is equivariantly quasi-isometric to the pants graph, so our results apply equally well to that","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Large-scale rank and rigidity of the Weil–Petersson metric\",\"authors\":\"B. Bowditch\",\"doi\":\"10.4171/GGD/557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the large-scale geometry of Weil-Petersson space, that is, Teichmüller space equipped with the Weil-Petersson metric. We show that this admits a natural coarse median structure of a specific rank. Given that this is equal to the maximal dimension of a quasi-isometrically embedded euclidean space, we recover a result of Eskin, Masur and Rafi which gives the coarse rank of the space. We go on to show that, apart from finitely many cases, the WeilPetersson spaces are quasi-isometrically distinct, and quasi-isometrically rigid. In particular, any quasi-isometry between such spaces is a bounded distance from an isometry. By a theorem of Brock, Weil-Petersson space is equivariantly quasi-isometric to the pants graph, so our results apply equally well to that\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/GGD/557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/GGD/557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们研究了Weil-Petersson空间的大尺度几何,即配备了Weil-Petersson度规的teichm ller空间。我们证明了这承认一个特定秩的自然粗中位数结构。假设这等于拟等距嵌入欧几里德空间的最大维数,我们恢复了Eskin, Masur和Rafi给出空间的粗秩的结果。我们继续证明,除了有限多的情况外,WeilPetersson空间是准等距不同的,并且是准等距刚性的。特别地,在这样的空间之间的任何准等距都是距离等距的有界距离。根据Brock定理,Weil-Petersson空间对裤子图是等距拟等距的,所以我们的结果同样适用于裤子图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Large-scale rank and rigidity of the Weil–Petersson metric
We study the large-scale geometry of Weil-Petersson space, that is, Teichmüller space equipped with the Weil-Petersson metric. We show that this admits a natural coarse median structure of a specific rank. Given that this is equal to the maximal dimension of a quasi-isometrically embedded euclidean space, we recover a result of Eskin, Masur and Rafi which gives the coarse rank of the space. We go on to show that, apart from finitely many cases, the WeilPetersson spaces are quasi-isometrically distinct, and quasi-isometrically rigid. In particular, any quasi-isometry between such spaces is a bounded distance from an isometry. By a theorem of Brock, Weil-Petersson space is equivariantly quasi-isometric to the pants graph, so our results apply equally well to that
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信