{"title":"提高钛及其合金镀层耐磨性和力学性能的研究进展","authors":"R. Ranjan, Anil Kumar Das Kumar Das","doi":"10.24874/ti.1416.12.22.03","DOIUrl":null,"url":null,"abstract":"Because of inadequate hardness, low resistance to wear, and excess friction coefficient of titanium, and its alloys are limited in their applicability. Cladding, a type of surface modification process, is used to create layers on titanium and its alloys that have superior mechanical qualities, wear characteristics, oxidation resistance at high temperatures, and good biocompatibility. Material selection is critical for achieving the increased qualities mentioned above, in addition to various cladding techniques and associated process parameters. A review of the outcomes of various common wear-resistant cladding techniques applied to the titanium alloy surface is the subject of this study. The most important functional claddings in this domain are also presented and investigated in depth. The present issues and future initiatives are also discussed, with an emphasis on identifying knowledge and technological gaps as well as attempting to establish future research possibilities. On this foundation, it is suggested that in the coming years, resistant-to-wear cladding with significant improvements in toughness and hardness should progress on the path of smart manufacturing techniques, optimising and precisely customising microstructural configurations, and developing numerical simulation techniques of cladding.","PeriodicalId":23320,"journal":{"name":"Tribology in Industry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving the Resistance to Wear and Mechanical Characteristics of Cladding Layers on Titanium and its Alloys: A Review\",\"authors\":\"R. Ranjan, Anil Kumar Das Kumar Das\",\"doi\":\"10.24874/ti.1416.12.22.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of inadequate hardness, low resistance to wear, and excess friction coefficient of titanium, and its alloys are limited in their applicability. Cladding, a type of surface modification process, is used to create layers on titanium and its alloys that have superior mechanical qualities, wear characteristics, oxidation resistance at high temperatures, and good biocompatibility. Material selection is critical for achieving the increased qualities mentioned above, in addition to various cladding techniques and associated process parameters. A review of the outcomes of various common wear-resistant cladding techniques applied to the titanium alloy surface is the subject of this study. The most important functional claddings in this domain are also presented and investigated in depth. The present issues and future initiatives are also discussed, with an emphasis on identifying knowledge and technological gaps as well as attempting to establish future research possibilities. On this foundation, it is suggested that in the coming years, resistant-to-wear cladding with significant improvements in toughness and hardness should progress on the path of smart manufacturing techniques, optimising and precisely customising microstructural configurations, and developing numerical simulation techniques of cladding.\",\"PeriodicalId\":23320,\"journal\":{\"name\":\"Tribology in Industry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24874/ti.1416.12.22.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24874/ti.1416.12.22.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Improving the Resistance to Wear and Mechanical Characteristics of Cladding Layers on Titanium and its Alloys: A Review
Because of inadequate hardness, low resistance to wear, and excess friction coefficient of titanium, and its alloys are limited in their applicability. Cladding, a type of surface modification process, is used to create layers on titanium and its alloys that have superior mechanical qualities, wear characteristics, oxidation resistance at high temperatures, and good biocompatibility. Material selection is critical for achieving the increased qualities mentioned above, in addition to various cladding techniques and associated process parameters. A review of the outcomes of various common wear-resistant cladding techniques applied to the titanium alloy surface is the subject of this study. The most important functional claddings in this domain are also presented and investigated in depth. The present issues and future initiatives are also discussed, with an emphasis on identifying knowledge and technological gaps as well as attempting to establish future research possibilities. On this foundation, it is suggested that in the coming years, resistant-to-wear cladding with significant improvements in toughness and hardness should progress on the path of smart manufacturing techniques, optimising and precisely customising microstructural configurations, and developing numerical simulation techniques of cladding.
期刊介绍:
he aim of Tribology in Industry journal is to publish quality experimental and theoretical research papers in fields of the science of friction, wear and lubrication and any closely related fields. The scope includes all aspects of materials science, surface science, applied physics and mechanical engineering which relate directly to the subjects of wear and friction. Topical areas include, but are not limited to: Friction, Wear, Lubricants, Surface characterization, Surface engineering, Nanotribology, Contact mechanics, Coatings, Alloys, Composites, Tribological design, Biotribology, Green Tribology.