期望算法指定复杂度

David Nemati, Eric M. Holloway
{"title":"期望算法指定复杂度","authors":"David Nemati, Eric M. Holloway","doi":"10.5048/bio-c.2019.2","DOIUrl":null,"url":null,"abstract":"Algorithmic specified complexity (ASC) is an information metric that measures meaning in an event, based on a chance hypothesis and a context. We prove expectation of ASC with regard to the chance hypothesis is always negative, and empirically apply our finding. We then use this result to prove expected ASC is conserved under stochastic processing, and that complexity for individual events is conserved under deterministic and stochastic processing.","PeriodicalId":89660,"journal":{"name":"BIO-complexity","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Expected Algorithmic Specified Complexity\",\"authors\":\"David Nemati, Eric M. Holloway\",\"doi\":\"10.5048/bio-c.2019.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algorithmic specified complexity (ASC) is an information metric that measures meaning in an event, based on a chance hypothesis and a context. We prove expectation of ASC with regard to the chance hypothesis is always negative, and empirically apply our finding. We then use this result to prove expected ASC is conserved under stochastic processing, and that complexity for individual events is conserved under deterministic and stochastic processing.\",\"PeriodicalId\":89660,\"journal\":{\"name\":\"BIO-complexity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BIO-complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5048/bio-c.2019.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BIO-complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5048/bio-c.2019.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

算法指定复杂性(ASC)是一种基于机会假设和上下文来衡量事件意义的信息度量。我们证明了ASC对机会假设的期望总是负的,并实证应用了我们的发现。然后,我们使用这个结果来证明预期ASC在随机处理下是守恒的,并且单个事件的复杂性在确定性和随机处理下也是守恒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expected Algorithmic Specified Complexity
Algorithmic specified complexity (ASC) is an information metric that measures meaning in an event, based on a chance hypothesis and a context. We prove expectation of ASC with regard to the chance hypothesis is always negative, and empirically apply our finding. We then use this result to prove expected ASC is conserved under stochastic processing, and that complexity for individual events is conserved under deterministic and stochastic processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信