关于S空间中一个具有分数微分算子的抛物型演化方程

IF 1.4 Q2 MATHEMATICS, APPLIED
V. Gorodetskiy, R. Kolisnyk, N. Shevchuk
{"title":"关于S空间中一个具有分数微分算子的抛物型演化方程","authors":"V. Gorodetskiy, R. Kolisnyk, N. Shevchuk","doi":"10.1155/2020/1673741","DOIUrl":null,"url":null,"abstract":"In the paper, we investigate a nonlocal multipoint by a time problem for the evolution equation with the operator A � (I − Δ)ω/2, Δ � (d2/dx2), and ω ∈ [1; − 2) is a fixed parameter. )e operator A is treated as a pseudodifferential operator in a certain space of type S. )e solvability of this problem is proved. )e representation of the solution is given in the form of a convolution of the fundamental solution with the initial function which is an element of the space of generalized functions of ultradistribution type. )e properties of the fundamental solution are investigated. )e behavior of the solution at t⟶ +∞ (solution stabilization) in the spaces of generalized functions of type S′ and the uniform stabilization of the solution to zero on R are studied.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":" ","pages":"1-11"},"PeriodicalIF":1.4000,"publicationDate":"2020-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/1673741","citationCount":"0","resultStr":"{\"title\":\"On One Evolution Equation of Parabolic Type with Fractional Differentiation Operator in S Spaces\",\"authors\":\"V. Gorodetskiy, R. Kolisnyk, N. Shevchuk\",\"doi\":\"10.1155/2020/1673741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we investigate a nonlocal multipoint by a time problem for the evolution equation with the operator A � (I − Δ)ω/2, Δ � (d2/dx2), and ω ∈ [1; − 2) is a fixed parameter. )e operator A is treated as a pseudodifferential operator in a certain space of type S. )e solvability of this problem is proved. )e representation of the solution is given in the form of a convolution of the fundamental solution with the initial function which is an element of the space of generalized functions of ultradistribution type. )e properties of the fundamental solution are investigated. )e behavior of the solution at t⟶ +∞ (solution stabilization) in the spaces of generalized functions of type S′ and the uniform stabilization of the solution to zero on R are studied.\",\"PeriodicalId\":55967,\"journal\":{\"name\":\"International Journal of Differential Equations\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2020/1673741\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2020/1673741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/1673741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有a′(I−Δ)ω/2, Δ′(d2/dx2), ω∈[1]的演化方程的非局部多点时间问题。−2)为固定参数。将算子A看作s型空间中的伪微分算子,证明了该问题的可解性。解的E表示形式是基本解与初始函数的卷积,初始函数是超分布型广义函数空间的一个元素。研究了基本解的E性质。研究了S '型广义函数空间中解在t +∞处(解的镇定性)的性质以及解在R上趋于零的一致镇定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On One Evolution Equation of Parabolic Type with Fractional Differentiation Operator in S Spaces
In the paper, we investigate a nonlocal multipoint by a time problem for the evolution equation with the operator A � (I − Δ)ω/2, Δ � (d2/dx2), and ω ∈ [1; − 2) is a fixed parameter. )e operator A is treated as a pseudodifferential operator in a certain space of type S. )e solvability of this problem is proved. )e representation of the solution is given in the form of a convolution of the fundamental solution with the initial function which is an element of the space of generalized functions of ultradistribution type. )e properties of the fundamental solution are investigated. )e behavior of the solution at t⟶ +∞ (solution stabilization) in the spaces of generalized functions of type S′ and the uniform stabilization of the solution to zero on R are studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信