一类符合柔性威布尔分布的混合截尾数据的估计与预测

IF 1.6 Q1 STATISTICS & PROBABILITY
V. Sharma
{"title":"一类符合柔性威布尔分布的混合截尾数据的估计与预测","authors":"V. Sharma","doi":"10.6092/ISSN.1973-2201/6779","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed Bayes estimators for estimating the parameters, reliability, hazard rate, mean time to failure from flexible Weibull distribution using Type-II hybrid censored sample. Bayes estimators have been obtained under squared error loss function assuming independent gamma prior distributions for the parameters. The maximum likelihood estimators along with asymptotic distributions have also been discussed. The performances of the estimators have been compared with respect to the various Type-II hybrid censoring schemes. For approximating the posteriors, we proposed the use of Markov chain Monte Carlo techniques such as Gibbs sampler and Metropolis-Hastings algorithm. Further, Bayesian One- andTwo-sample prediction problems have also been considered. A real data set has been analysed for illustration purposes.","PeriodicalId":45117,"journal":{"name":"Statistica","volume":"77 1","pages":"385-414"},"PeriodicalIF":1.6000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimation and Prediction for Type-II Hybrid Censored Data Follow Flexible Weibull Distribution\",\"authors\":\"V. Sharma\",\"doi\":\"10.6092/ISSN.1973-2201/6779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed Bayes estimators for estimating the parameters, reliability, hazard rate, mean time to failure from flexible Weibull distribution using Type-II hybrid censored sample. Bayes estimators have been obtained under squared error loss function assuming independent gamma prior distributions for the parameters. The maximum likelihood estimators along with asymptotic distributions have also been discussed. The performances of the estimators have been compared with respect to the various Type-II hybrid censoring schemes. For approximating the posteriors, we proposed the use of Markov chain Monte Carlo techniques such as Gibbs sampler and Metropolis-Hastings algorithm. Further, Bayesian One- andTwo-sample prediction problems have also been considered. A real data set has been analysed for illustration purposes.\",\"PeriodicalId\":45117,\"journal\":{\"name\":\"Statistica\",\"volume\":\"77 1\",\"pages\":\"385-414\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2018-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6092/ISSN.1973-2201/6779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6092/ISSN.1973-2201/6779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了贝叶斯估计器来估计参数,可靠性,风险率,平均失效时间从灵活的威布尔分布使用类型ii混合截尾样本。在假设参数的独立先验分布的平方误差损失函数下,得到了贝叶斯估计。并讨论了渐近分布的极大似然估计。比较了估计器在各种ii型混合滤波方案下的性能。为了逼近后验,我们提出了使用Gibbs采样器和Metropolis-Hastings算法等马尔可夫链蒙特卡罗技术。此外,还考虑了贝叶斯单样本和双样本预测问题。为了说明的目的,我们分析了一个真实的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation and Prediction for Type-II Hybrid Censored Data Follow Flexible Weibull Distribution
In this paper, we proposed Bayes estimators for estimating the parameters, reliability, hazard rate, mean time to failure from flexible Weibull distribution using Type-II hybrid censored sample. Bayes estimators have been obtained under squared error loss function assuming independent gamma prior distributions for the parameters. The maximum likelihood estimators along with asymptotic distributions have also been discussed. The performances of the estimators have been compared with respect to the various Type-II hybrid censoring schemes. For approximating the posteriors, we proposed the use of Markov chain Monte Carlo techniques such as Gibbs sampler and Metropolis-Hastings algorithm. Further, Bayesian One- andTwo-sample prediction problems have also been considered. A real data set has been analysed for illustration purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica
Statistica STATISTICS & PROBABILITY-
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信