{"title":"穆罕默德二分法中的平等案例——哦","authors":"Laurent Dufloux","doi":"10.4171/jfg/80","DOIUrl":null,"url":null,"abstract":"If $n \\geq 3$ and $\\Gamma$ is a convex-cocompact Zariski-dense discrete subgroup of $\\mathbf{SO}^o(1,n+1)$ such that $\\delta_\\Gamma=n-m$ where $m$ is an integer, $1 \\leq m \\leq n-1$, we show that for any $m$-dimensional subgroup $U$ in the horospheric group $N$, the Burger-Roblin measure associated to $\\Gamma$ on the quotient of the frame bundle is $U$-recurrent.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2017-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The case of equality in the dichotomy of Mohammadi–Oh\",\"authors\":\"Laurent Dufloux\",\"doi\":\"10.4171/jfg/80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If $n \\\\geq 3$ and $\\\\Gamma$ is a convex-cocompact Zariski-dense discrete subgroup of $\\\\mathbf{SO}^o(1,n+1)$ such that $\\\\delta_\\\\Gamma=n-m$ where $m$ is an integer, $1 \\\\leq m \\\\leq n-1$, we show that for any $m$-dimensional subgroup $U$ in the horospheric group $N$, the Burger-Roblin measure associated to $\\\\Gamma$ on the quotient of the frame bundle is $U$-recurrent.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/80\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/80","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The case of equality in the dichotomy of Mohammadi–Oh
If $n \geq 3$ and $\Gamma$ is a convex-cocompact Zariski-dense discrete subgroup of $\mathbf{SO}^o(1,n+1)$ such that $\delta_\Gamma=n-m$ where $m$ is an integer, $1 \leq m \leq n-1$, we show that for any $m$-dimensional subgroup $U$ in the horospheric group $N$, the Burger-Roblin measure associated to $\Gamma$ on the quotient of the frame bundle is $U$-recurrent.