mist - mix:多语言手写数字识别数据集

Weiwei Jiang
{"title":"mist - mix:多语言手写数字识别数据集","authors":"Weiwei Jiang","doi":"10.1088/2633-1357/abad0e","DOIUrl":null,"url":null,"abstract":"In this note, we contribute a multi-language handwritten digit recognition dataset named MNIST-MIX, which is the largest dataset of the same type in terms of both languages and data samples. With the same data format with MNIST, MNIST-MIX can be seamlessly applied in existing studies for handwritten digit recognition. By introducing digits from 10 different languages, MNIST-MIX becomes a more challenging dataset and its imbalanced classification requires a better design of models. We also present the results of applying a LeNet model which is pre-trained on MNIST as the baseline.","PeriodicalId":93771,"journal":{"name":"IOP SciNotes","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"MNIST-MIX: a multi-language handwritten digit recognition dataset\",\"authors\":\"Weiwei Jiang\",\"doi\":\"10.1088/2633-1357/abad0e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we contribute a multi-language handwritten digit recognition dataset named MNIST-MIX, which is the largest dataset of the same type in terms of both languages and data samples. With the same data format with MNIST, MNIST-MIX can be seamlessly applied in existing studies for handwritten digit recognition. By introducing digits from 10 different languages, MNIST-MIX becomes a more challenging dataset and its imbalanced classification requires a better design of models. We also present the results of applying a LeNet model which is pre-trained on MNIST as the baseline.\",\"PeriodicalId\":93771,\"journal\":{\"name\":\"IOP SciNotes\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP SciNotes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-1357/abad0e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP SciNotes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-1357/abad0e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本说明中,我们提供了一个名为MNIST-MIX的多语言手写数字识别数据集,它是同类型语言和数据样本中最大的数据集。使用与MNIST相同的数据格式,MNIST-MIX可以无缝地应用于现有的手写数字识别研究中。通过引入来自10种不同语言的数字,MNIST-MIX成为一个更具挑战性的数据集,其不平衡分类需要更好的模型设计。我们还介绍了应用在MNIST上预训练的LeNet模型作为基线的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MNIST-MIX: a multi-language handwritten digit recognition dataset
In this note, we contribute a multi-language handwritten digit recognition dataset named MNIST-MIX, which is the largest dataset of the same type in terms of both languages and data samples. With the same data format with MNIST, MNIST-MIX can be seamlessly applied in existing studies for handwritten digit recognition. By introducing digits from 10 different languages, MNIST-MIX becomes a more challenging dataset and its imbalanced classification requires a better design of models. We also present the results of applying a LeNet model which is pre-trained on MNIST as the baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信