Kazhdan-Lusztig-Stanley多项式的代数几何

IF 1.3 Q1 MATHEMATICS
N. Proudfoot
{"title":"Kazhdan-Lusztig-Stanley多项式的代数几何","authors":"N. Proudfoot","doi":"10.4171/EMSS/28","DOIUrl":null,"url":null,"abstract":"Kazhdan-Lusztig-Stanley polynomials are a combinatorial generalization of Kazhdan-Lusztig polynomials of for Coxeter groups that include g-polynomials of polytopes and Kazhdan-Lusztig polynomials of matroids. In the cases of Weyl groups, rational polytopes, and realizable matroids, one can count points over finite fields on flag varieties, toric varieties, or reciprocal planes to obtain cohomological interpretations of these polynomials. We survey these results and unite them under a single geometric framework.","PeriodicalId":43833,"journal":{"name":"EMS Surveys in Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2017-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/EMSS/28","citationCount":"19","resultStr":"{\"title\":\"The algebraic geometry of Kazhdan–Lusztig–Stanley polynomials\",\"authors\":\"N. Proudfoot\",\"doi\":\"10.4171/EMSS/28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kazhdan-Lusztig-Stanley polynomials are a combinatorial generalization of Kazhdan-Lusztig polynomials of for Coxeter groups that include g-polynomials of polytopes and Kazhdan-Lusztig polynomials of matroids. In the cases of Weyl groups, rational polytopes, and realizable matroids, one can count points over finite fields on flag varieties, toric varieties, or reciprocal planes to obtain cohomological interpretations of these polynomials. We survey these results and unite them under a single geometric framework.\",\"PeriodicalId\":43833,\"journal\":{\"name\":\"EMS Surveys in Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2017-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/EMSS/28\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMS Surveys in Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/EMSS/28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMS Surveys in Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/EMSS/28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 19

摘要

Kazhdan-Lusztig- stanley多项式是对Coxeter群的Kazhdan-Lusztig多项式的组合推广,Coxeter群包括多体的g多项式和拟阵的Kazhdan-Lusztig多项式。在Weyl群、有理多面体和可实现的拟阵的情况下,我们可以在旗变、环变或互反平面上计算有限域上的点,以获得这些多项式的上同调解释。我们调查了这些结果,并将它们统一在一个单一的几何框架下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The algebraic geometry of Kazhdan–Lusztig–Stanley polynomials
Kazhdan-Lusztig-Stanley polynomials are a combinatorial generalization of Kazhdan-Lusztig polynomials of for Coxeter groups that include g-polynomials of polytopes and Kazhdan-Lusztig polynomials of matroids. In the cases of Weyl groups, rational polytopes, and realizable matroids, one can count points over finite fields on flag varieties, toric varieties, or reciprocal planes to obtain cohomological interpretations of these polynomials. We survey these results and unite them under a single geometric framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信