Box-Cox转换:回顾和扩展

IF 3.9 1区 数学 Q1 STATISTICS & PROBABILITY
A. Atkinson, M. Riani, A. Corbellini
{"title":"Box-Cox转换:回顾和扩展","authors":"A. Atkinson, M. Riani, A. Corbellini","doi":"10.1214/20-STS778","DOIUrl":null,"url":null,"abstract":"The Box-Cox power transformation family for non-negative responses in linear models has a long and interesting history in both statistical practice and theory, which we summarize. The relationship between generalized linear models and log transformed data is illustrated. Extensions investigated include the transform both sides model and the Yeo-Johnson transformation for observations that can be positive or negative. The paper also describes an extended Yeo-Johnson transformation that allows positive and negative responses to have different power transformations. Analyses of data show this to be necessary. Robustness enters in the fan plot for which the forward search provides an ordering of the data. Plausible transformations are checked with an extended fan plot. These procedures are used to compare parametric power transformations with nonparametric transformations produced by smoothing.","PeriodicalId":51172,"journal":{"name":"Statistical Science","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"The Box–Cox Transformation: Review and Extensions\",\"authors\":\"A. Atkinson, M. Riani, A. Corbellini\",\"doi\":\"10.1214/20-STS778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Box-Cox power transformation family for non-negative responses in linear models has a long and interesting history in both statistical practice and theory, which we summarize. The relationship between generalized linear models and log transformed data is illustrated. Extensions investigated include the transform both sides model and the Yeo-Johnson transformation for observations that can be positive or negative. The paper also describes an extended Yeo-Johnson transformation that allows positive and negative responses to have different power transformations. Analyses of data show this to be necessary. Robustness enters in the fan plot for which the forward search provides an ordering of the data. Plausible transformations are checked with an extended fan plot. These procedures are used to compare parametric power transformations with nonparametric transformations produced by smoothing.\",\"PeriodicalId\":51172,\"journal\":{\"name\":\"Statistical Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/20-STS778\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-STS778","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 44

摘要

线性模型中非负响应的Box-Cox功率变换族在统计实践和理论方面都有着悠久而有趣的历史,我们对此进行了总结。说明了广义线性模型与对数变换数据之间的关系。所研究的扩展包括变换两侧模型和杨-约翰逊变换,可以是正的或负的观测。本文还描述了一个允许正响应和负响应具有不同功率变换的扩展Yeo-Johnson变换。数据分析表明,这是必要的。鲁棒性进入扇形图,其中正向搜索提供了数据的排序。合理的转换用扩展的扇形图进行检验。这些程序用于比较参数幂变换与由平滑产生的非参数变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Box–Cox Transformation: Review and Extensions
The Box-Cox power transformation family for non-negative responses in linear models has a long and interesting history in both statistical practice and theory, which we summarize. The relationship between generalized linear models and log transformed data is illustrated. Extensions investigated include the transform both sides model and the Yeo-Johnson transformation for observations that can be positive or negative. The paper also describes an extended Yeo-Johnson transformation that allows positive and negative responses to have different power transformations. Analyses of data show this to be necessary. Robustness enters in the fan plot for which the forward search provides an ordering of the data. Plausible transformations are checked with an extended fan plot. These procedures are used to compare parametric power transformations with nonparametric transformations produced by smoothing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Science
Statistical Science 数学-统计学与概率论
CiteScore
6.50
自引率
1.80%
发文量
40
审稿时长
>12 weeks
期刊介绍: The central purpose of Statistical Science is to convey the richness, breadth and unity of the field by presenting the full range of contemporary statistical thought at a moderate technical level, accessible to the wide community of practitioners, researchers and students of statistics and probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信