用θ函数逼近tau函数

IF 1.2 3区 数学 Q1 MATHEMATICS
B. Dubrovin
{"title":"用θ函数逼近tau函数","authors":"B. Dubrovin","doi":"10.4310/CNTP.2019.V13.N1.A7","DOIUrl":null,"url":null,"abstract":"We prove that the logarithm of an arbitrary tau-function of the KdV hierarchy can be approximated, in the topology of graded formal series by the logarithmic expansions of hyperelliptic theta-functions of finite genus, up to at most quadratic terms. As an example we consider theta-functional approximations of the Witten--Kontsevich tau-function.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximating tau-functions by theta-functions\",\"authors\":\"B. Dubrovin\",\"doi\":\"10.4310/CNTP.2019.V13.N1.A7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the logarithm of an arbitrary tau-function of the KdV hierarchy can be approximated, in the topology of graded formal series by the logarithmic expansions of hyperelliptic theta-functions of finite genus, up to at most quadratic terms. As an example we consider theta-functional approximations of the Witten--Kontsevich tau-function.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2019.V13.N1.A7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2019.V13.N1.A7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了在分次形式级数拓扑中,KdV层次的任意τ函数的对数可以通过有限亏格的超椭圆θ函数的对数展开来近似,最多可达二次项。作为一个例子,我们考虑Witten-Kontsevich-tau函数的θ函数近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximating tau-functions by theta-functions
We prove that the logarithm of an arbitrary tau-function of the KdV hierarchy can be approximated, in the topology of graded formal series by the logarithmic expansions of hyperelliptic theta-functions of finite genus, up to at most quadratic terms. As an example we consider theta-functional approximations of the Witten--Kontsevich tau-function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信