N-Qudit-Werner-Popescu态的一个参数族:利用条件量子相对Tsallis熵的二分可分离性

Anantha S. Nayak, Sudha  , A. Devi, A. K. Rajagopal
{"title":"N-Qudit-Werner-Popescu态的一个参数族:利用条件量子相对Tsallis熵的二分可分离性","authors":"Anantha S. Nayak, Sudha  , A. Devi, A. K. Rajagopal","doi":"10.4236/JQIS.2018.81002","DOIUrl":null,"url":null,"abstract":"The conditional version of sandwiched Tsallis relative entropy (CSTRE) is employed to study the bipartite separability of one parameter family of N-qudit Werner-Popescu states in their 1:N-1 partition. For all N, the strongest limitation on bipartite separability is realized in the limit and is found to match exactly with the separability range obtained using an algebraic method which is both necessary and sufficient. The theoretical superiority of using CSTRE criterion to find the bipartite separability range over the one using Abe-Rajagopal (AR) q-conditional entropy is illustrated by comparing the convergence of the parameter x with respect to q, in the implicit plots of AR q-conditional entropy and CSTRE.","PeriodicalId":58996,"journal":{"name":"量子信息科学期刊(英文)","volume":"08 1","pages":"12-23"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"One Parameter Family of N-Qudit Werner-Popescu States: Bipartite Separability Using Conditional Quantum Relative Tsallis Entropy\",\"authors\":\"Anantha S. Nayak, Sudha  , A. Devi, A. K. Rajagopal\",\"doi\":\"10.4236/JQIS.2018.81002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conditional version of sandwiched Tsallis relative entropy (CSTRE) is employed to study the bipartite separability of one parameter family of N-qudit Werner-Popescu states in their 1:N-1 partition. For all N, the strongest limitation on bipartite separability is realized in the limit and is found to match exactly with the separability range obtained using an algebraic method which is both necessary and sufficient. The theoretical superiority of using CSTRE criterion to find the bipartite separability range over the one using Abe-Rajagopal (AR) q-conditional entropy is illustrated by comparing the convergence of the parameter x with respect to q, in the implicit plots of AR q-conditional entropy and CSTRE.\",\"PeriodicalId\":58996,\"journal\":{\"name\":\"量子信息科学期刊(英文)\",\"volume\":\"08 1\",\"pages\":\"12-23\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"量子信息科学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/JQIS.2018.81002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"量子信息科学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/JQIS.2018.81002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用条件形式的夹层Tsallis相对熵(CSTRE)研究了一参数族N—qudit-Werner-Popescu态在1:N-1分区中的二分可分性。对于所有N,在极限中实现了对二分可分性的最强限制,并发现其与使用代数方法获得的可分性范围完全匹配,该代数方法是必要的和充分的。通过比较参数x相对于q的收敛性,说明了在AR q条件熵和CSTRE的隐式图中,使用CSTRE准则来寻找二分可分性范围比使用Abe-Rajagopal(AR)q条件熵的准则更具理论优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One Parameter Family of N-Qudit Werner-Popescu States: Bipartite Separability Using Conditional Quantum Relative Tsallis Entropy
The conditional version of sandwiched Tsallis relative entropy (CSTRE) is employed to study the bipartite separability of one parameter family of N-qudit Werner-Popescu states in their 1:N-1 partition. For all N, the strongest limitation on bipartite separability is realized in the limit and is found to match exactly with the separability range obtained using an algebraic method which is both necessary and sufficient. The theoretical superiority of using CSTRE criterion to find the bipartite separability range over the one using Abe-Rajagopal (AR) q-conditional entropy is illustrated by comparing the convergence of the parameter x with respect to q, in the implicit plots of AR q-conditional entropy and CSTRE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
108
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信