探索化学空间——生成模型及其评价

Martin Vogt
{"title":"探索化学空间——生成模型及其评价","authors":"Martin Vogt","doi":"10.1016/j.ailsci.2023.100064","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in the field of artificial intelligence, specifically regarding deep learning methods, have invigorated research into novel ways for the exploration of chemical space. Compared to more traditional methods that rely on chemical fragments and combinatorial recombination deep generative models generate molecules in a non-transparent way that defies easy rationalization. However, this opaque nature also promises to explore uncharted chemical space in novel ways that do not rely on structural similarity directly. These aspects and the complexity of training such models makes model assessment regarding novelty, uniqueness, and distribution of generated molecules a central aspect. This perspective gives an overview of current methodologies for chemical space exploration with an emphasis on deep neural network approaches. Key aspects of generative models include choice of molecular representation, the targeted chemical space, and the methodology for assessing and validating chemical space coverage.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":"3 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploring chemical space — Generative models and their evaluation\",\"authors\":\"Martin Vogt\",\"doi\":\"10.1016/j.ailsci.2023.100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advances in the field of artificial intelligence, specifically regarding deep learning methods, have invigorated research into novel ways for the exploration of chemical space. Compared to more traditional methods that rely on chemical fragments and combinatorial recombination deep generative models generate molecules in a non-transparent way that defies easy rationalization. However, this opaque nature also promises to explore uncharted chemical space in novel ways that do not rely on structural similarity directly. These aspects and the complexity of training such models makes model assessment regarding novelty, uniqueness, and distribution of generated molecules a central aspect. This perspective gives an overview of current methodologies for chemical space exploration with an emphasis on deep neural network approaches. Key aspects of generative models include choice of molecular representation, the targeted chemical space, and the methodology for assessing and validating chemical space coverage.</p></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":\"3 \",\"pages\":\"Article 100064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667318523000089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318523000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人工智能领域的最新进展,特别是关于深度学习方法的进展,激发了对探索化学空间的新方法的研究。与依赖化学碎片和组合重组的更传统的方法相比,深度生成模型以一种不透明的方式生成分子,无法轻易合理化。然而,这种不透明的性质也有望以新颖的方式探索未知的化学空间,而不直接依赖于结构相似性。这些方面和训练这些模型的复杂性使得关于新颖性、唯一性和生成分子分布的模型评估成为一个中心方面。这一观点概述了当前化学空间探索的方法,重点是深度神经网络方法。生成模型的关键方面包括分子表示的选择,目标化学空间,以及评估和验证化学空间覆盖的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring chemical space — Generative models and their evaluation

Recent advances in the field of artificial intelligence, specifically regarding deep learning methods, have invigorated research into novel ways for the exploration of chemical space. Compared to more traditional methods that rely on chemical fragments and combinatorial recombination deep generative models generate molecules in a non-transparent way that defies easy rationalization. However, this opaque nature also promises to explore uncharted chemical space in novel ways that do not rely on structural similarity directly. These aspects and the complexity of training such models makes model assessment regarding novelty, uniqueness, and distribution of generated molecules a central aspect. This perspective gives an overview of current methodologies for chemical space exploration with an emphasis on deep neural network approaches. Key aspects of generative models include choice of molecular representation, the targeted chemical space, and the methodology for assessing and validating chemical space coverage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence in the life sciences
Artificial intelligence in the life sciences Pharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
15 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信