Seiberg-Witten方程与双曲型三流形的长度谱

IF 3.5 1区 数学 Q1 MATHEMATICS
Francesco Lin, Michael Lipnowski
{"title":"Seiberg-Witten方程与双曲型三流形的长度谱","authors":"Francesco Lin, Michael Lipnowski","doi":"10.1090/JAMS/982","DOIUrl":null,"url":null,"abstract":"We exhibit the first examples of hyperbolic three-manifolds for which the Seiberg-Witten equations do not admit any irreducible solution. Our approach relies on hyperbolic geometry in an essential way; it combines an explicit upper bound for the first eigenvalue on coexact $1$-forms $\\lambda_1^*$ on rational homology spheres which admit irreducible solutions together with a version of the Selberg trace formula relating the spectrum of the Laplacian on coexact $1$-forms with the volume and complex length spectrum of a hyperbolic three-manifold. Using these relationships, we also provide precise numerical bounds on $\\lambda_1^*$ for several hyperbolic rational homology spheres.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The Seiberg-Witten equations and the length spectrum of hyperbolic three-manifolds\",\"authors\":\"Francesco Lin, Michael Lipnowski\",\"doi\":\"10.1090/JAMS/982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exhibit the first examples of hyperbolic three-manifolds for which the Seiberg-Witten equations do not admit any irreducible solution. Our approach relies on hyperbolic geometry in an essential way; it combines an explicit upper bound for the first eigenvalue on coexact $1$-forms $\\\\lambda_1^*$ on rational homology spheres which admit irreducible solutions together with a version of the Selberg trace formula relating the spectrum of the Laplacian on coexact $1$-forms with the volume and complex length spectrum of a hyperbolic three-manifold. Using these relationships, we also provide precise numerical bounds on $\\\\lambda_1^*$ for several hyperbolic rational homology spheres.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/JAMS/982\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/JAMS/982","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 15

摘要

我们展示了Seiberg-Witten方程不允许任何不可约解的双曲三流形的第一个例子。我们的方法在本质上依赖于双曲几何;它结合了在允许不可约解的有理同调球上的Coexat$1$-形式$\lambda_1^*$上的第一特征值的显式上界,以及将Laplacian在Coexat$$-形式上的谱与双曲三流形的体积和复长谱联系起来的Selberg迹公式的一个版本。利用这些关系,我们还为几个双曲有理同调球提供了$\lambda_1^*$上的精确数值边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Seiberg-Witten equations and the length spectrum of hyperbolic three-manifolds
We exhibit the first examples of hyperbolic three-manifolds for which the Seiberg-Witten equations do not admit any irreducible solution. Our approach relies on hyperbolic geometry in an essential way; it combines an explicit upper bound for the first eigenvalue on coexact $1$-forms $\lambda_1^*$ on rational homology spheres which admit irreducible solutions together with a version of the Selberg trace formula relating the spectrum of the Laplacian on coexact $1$-forms with the volume and complex length spectrum of a hyperbolic three-manifold. Using these relationships, we also provide precise numerical bounds on $\lambda_1^*$ for several hyperbolic rational homology spheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信