$\left(k+l\right)$阶非线性差分方程的可解性

IF 0.7 Q2 MATHEMATICS
Merve Kara, Y. Yazlik
{"title":"$\\left(k+l\\right)$阶非线性差分方程的可解性","authors":"Merve Kara, Y. Yazlik","doi":"10.32513/tmj/19322008138","DOIUrl":null,"url":null,"abstract":"It is shown that the following $\\left( k+l\\right) $-order nonlinear difference equation $$x_{n}=\\frac{x_{n-k}x_{n-k-l}}{x_{n-l}\\left( a_{n}+b_{n}x_{n-k}x_{n-k-l}\\right)}, \\ n\\in \\mathbb{N}_{0},$$ where $k,l\\in \\mathbb{N}$, $\\left(a_{n} \\right)_{n\\in \\mathbb{N}_{0}}$, $\\left(b_{n} \\right)_{n\\in \\mathbb{N}_{0}}$ and the initial values $x_{-i}$, $i=\\overline {1,k+l}$, are real numbers, can be solved and extended some results in literature. Also, by using obtained formulas, we give the forbidden set of the initial values for aforementioned equation and study the asymptotic behavior of well-defined solutions of above difference equation for the case $k=3$, $l=k$.","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solvability of a $\\\\left( k+l\\\\right)$-order nonlinear difference equation\",\"authors\":\"Merve Kara, Y. Yazlik\",\"doi\":\"10.32513/tmj/19322008138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that the following $\\\\left( k+l\\\\right) $-order nonlinear difference equation $$x_{n}=\\\\frac{x_{n-k}x_{n-k-l}}{x_{n-l}\\\\left( a_{n}+b_{n}x_{n-k}x_{n-k-l}\\\\right)}, \\\\ n\\\\in \\\\mathbb{N}_{0},$$ where $k,l\\\\in \\\\mathbb{N}$, $\\\\left(a_{n} \\\\right)_{n\\\\in \\\\mathbb{N}_{0}}$, $\\\\left(b_{n} \\\\right)_{n\\\\in \\\\mathbb{N}_{0}}$ and the initial values $x_{-i}$, $i=\\\\overline {1,k+l}$, are real numbers, can be solved and extended some results in literature. Also, by using obtained formulas, we give the forbidden set of the initial values for aforementioned equation and study the asymptotic behavior of well-defined solutions of above difference equation for the case $k=3$, $l=k$.\",\"PeriodicalId\":43977,\"journal\":{\"name\":\"Tbilisi Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tbilisi Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tmj/19322008138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

证明了以下$\left(k+l\right)$阶非线性差分方程$x_{n}=\frac{x_{n-k}x_{n-k-l}}{x_{n-l}\left(a_{n}+b_{n}x_{n-k}x_{n-k-l}\ right)},\ n\in\mathbb{N}_{0},$$其中$k,l\in\mathbb{N}$,$\left(a_{N}\right)_{N \in\math bb{N}_{0}}$,$\left(b_{n}\right)_{n\in\mathbb{N}_{0}}$和初始值$x_{-i}$,$i=\overline{1,k+l}$是实数,可以求解和推广文献中的一些结果。同时,利用所得到的公式,我们给出了上述方程初值的禁集,并研究了上述差分方程在$k=3$,$l=k$情况下定义解的渐近性态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solvability of a $\left( k+l\right)$-order nonlinear difference equation
It is shown that the following $\left( k+l\right) $-order nonlinear difference equation $$x_{n}=\frac{x_{n-k}x_{n-k-l}}{x_{n-l}\left( a_{n}+b_{n}x_{n-k}x_{n-k-l}\right)}, \ n\in \mathbb{N}_{0},$$ where $k,l\in \mathbb{N}$, $\left(a_{n} \right)_{n\in \mathbb{N}_{0}}$, $\left(b_{n} \right)_{n\in \mathbb{N}_{0}}$ and the initial values $x_{-i}$, $i=\overline {1,k+l}$, are real numbers, can be solved and extended some results in literature. Also, by using obtained formulas, we give the forbidden set of the initial values for aforementioned equation and study the asymptotic behavior of well-defined solutions of above difference equation for the case $k=3$, $l=k$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信