基于稀疏自编码器的入侵检测系统深度特征提取

Cao Xiaopeng, Qu Hongyan
{"title":"基于稀疏自编码器的入侵检测系统深度特征提取","authors":"Cao Xiaopeng, Qu Hongyan","doi":"10.5121/csit.2020.101906","DOIUrl":null,"url":null,"abstract":"The massive network traffic and high-dimensional features affect detection performance. In order to improve the efficiency and performance of detection, whale optimization sparse autoencoder model (WO-SAE) is proposed. Firstly, sparse autoencoder performs unsupervised training on high-dimensional raw data and extracts low-dimensional features of network traffic. Secondly, the key parameters of sparse autoencoder are optimized automatically by whale optimization algorithm to achieve better feature extraction ability. Finally, gated recurrent unit is used to classify the time series data. The experimental results show that the proposed model is superior to existing detection algorithms in accuracy, precision, and recall. And the accuracy presents 98.69%. WO-SAE model is a novel approach that reduces the user’s reliance on deep learning expertise.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Feature Extraction via Sparse Autoencoder for Intrusion Detection System\",\"authors\":\"Cao Xiaopeng, Qu Hongyan\",\"doi\":\"10.5121/csit.2020.101906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massive network traffic and high-dimensional features affect detection performance. In order to improve the efficiency and performance of detection, whale optimization sparse autoencoder model (WO-SAE) is proposed. Firstly, sparse autoencoder performs unsupervised training on high-dimensional raw data and extracts low-dimensional features of network traffic. Secondly, the key parameters of sparse autoencoder are optimized automatically by whale optimization algorithm to achieve better feature extraction ability. Finally, gated recurrent unit is used to classify the time series data. The experimental results show that the proposed model is superior to existing detection algorithms in accuracy, precision, and recall. And the accuracy presents 98.69%. WO-SAE model is a novel approach that reduces the user’s reliance on deep learning expertise.\",\"PeriodicalId\":72673,\"journal\":{\"name\":\"Computer science & information technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer science & information technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2020.101906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2020.101906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

海量的网络流量和高维特征影响检测性能。为了提高检测效率和性能,提出了鲸鱼优化稀疏自动编码器模型(WO-SAE)。首先,稀疏自动编码器对高维原始数据进行无监督训练,提取网络流量的低维特征。其次,利用whale优化算法对稀疏自动编码器的关键参数进行自动优化,以获得更好的特征提取能力。最后,使用门控递归单元对时间序列数据进行分类。实验结果表明,该模型在准确度、精度和召回率方面优于现有的检测算法。WO-SAE模型是一种减少用户对深度学习专业知识依赖的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Feature Extraction via Sparse Autoencoder for Intrusion Detection System
The massive network traffic and high-dimensional features affect detection performance. In order to improve the efficiency and performance of detection, whale optimization sparse autoencoder model (WO-SAE) is proposed. Firstly, sparse autoencoder performs unsupervised training on high-dimensional raw data and extracts low-dimensional features of network traffic. Secondly, the key parameters of sparse autoencoder are optimized automatically by whale optimization algorithm to achieve better feature extraction ability. Finally, gated recurrent unit is used to classify the time series data. The experimental results show that the proposed model is superior to existing detection algorithms in accuracy, precision, and recall. And the accuracy presents 98.69%. WO-SAE model is a novel approach that reduces the user’s reliance on deep learning expertise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信