{"title":"量化论证微积分与自然逻辑","authors":"Hanoch Ben-Yami","doi":"10.48106/dial.v74.i2.02","DOIUrl":null,"url":null,"abstract":"The formalisation of natural language arguments in a formal language close to it in syntax has been a central aim of Moss's Natural Logic. I examine how the Quantified Argument Calculus (Quarc) can handle the inferences Moss has considered. I show that they can be incorporated in existing versions of Quarc or in straightforward extensions of it, all within sound and complete systems. Moreover, Quarc is closer in some respects to natural language than are Moss's systems---for instance, it does not use negative nouns. The process also sheds light on formal properties and presuppositions of some inferences it formalises. Directions for future work are outlined.","PeriodicalId":46676,"journal":{"name":"DIALECTICA","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Quantified Argument Calculus and Natural Logic\",\"authors\":\"Hanoch Ben-Yami\",\"doi\":\"10.48106/dial.v74.i2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The formalisation of natural language arguments in a formal language close to it in syntax has been a central aim of Moss's Natural Logic. I examine how the Quantified Argument Calculus (Quarc) can handle the inferences Moss has considered. I show that they can be incorporated in existing versions of Quarc or in straightforward extensions of it, all within sound and complete systems. Moreover, Quarc is closer in some respects to natural language than are Moss's systems---for instance, it does not use negative nouns. The process also sheds light on formal properties and presuppositions of some inferences it formalises. Directions for future work are outlined.\",\"PeriodicalId\":46676,\"journal\":{\"name\":\"DIALECTICA\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DIALECTICA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48106/dial.v74.i2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIALECTICA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48106/dial.v74.i2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
The Quantified Argument Calculus and Natural Logic
The formalisation of natural language arguments in a formal language close to it in syntax has been a central aim of Moss's Natural Logic. I examine how the Quantified Argument Calculus (Quarc) can handle the inferences Moss has considered. I show that they can be incorporated in existing versions of Quarc or in straightforward extensions of it, all within sound and complete systems. Moreover, Quarc is closer in some respects to natural language than are Moss's systems---for instance, it does not use negative nouns. The process also sheds light on formal properties and presuppositions of some inferences it formalises. Directions for future work are outlined.
期刊介绍:
Dialectica publishes first-rate articles predominantly in theoretical and systematic philosophy. It is edited in Switzerland and has a focus on analytical philosophy undertaken on the continent. Continuing the work of its founding members, dialectica seeks a better understanding of the mutual support between science and philosophy that both disciplines need and enjoy in their common search for understanding.