{"title":"二级MHD辐射流在多孔介质上的传热传质效应","authors":"A. P. Baitharu, S. Sahoo, G. Dash","doi":"10.3329/jname.v17i1.37777","DOIUrl":null,"url":null,"abstract":"The present problem deals with a radiative second grade fluid flow through a porous medium over a semi infinite stretching sheet. In the present study, governing equations for the third grade fluid has been formulated. However, computation has been made for a second grade fluid as a particular case of third grade of fluid. The bounding surface is subjected to power law temperature distribution and heat flux. Confluent hypergeometric function and Runge-Kutta method of fourth order are used to solve the transformed non-linear governing equations. The physical variables such as velocity, temperature and concentration are studied in response to radiative heat transfer, electromagnetic mechanical force and porosity of the medium. The important findings of the present study are: the applied transverse magnetic field prevents the growth of boundary layer but accelerates the mass transfer; the presence of porous medium in a higher Reynolds number-fluid reduces the skin friction which is desirable for maintaining laminarity of flow and also for reduction of heat transfer rate at the surface; the temperature distribution decreases with the thermal radiation for both PST and PHF cases. In asymptotic case, presence of thermal radiation improves thermal stability.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"17 1","pages":"51-66"},"PeriodicalIF":1.2000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Heat and mass transfer effect on a radiative second grade MHD flow in a porous medium over a stretching sheet\",\"authors\":\"A. P. Baitharu, S. Sahoo, G. Dash\",\"doi\":\"10.3329/jname.v17i1.37777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present problem deals with a radiative second grade fluid flow through a porous medium over a semi infinite stretching sheet. In the present study, governing equations for the third grade fluid has been formulated. However, computation has been made for a second grade fluid as a particular case of third grade of fluid. The bounding surface is subjected to power law temperature distribution and heat flux. Confluent hypergeometric function and Runge-Kutta method of fourth order are used to solve the transformed non-linear governing equations. The physical variables such as velocity, temperature and concentration are studied in response to radiative heat transfer, electromagnetic mechanical force and porosity of the medium. The important findings of the present study are: the applied transverse magnetic field prevents the growth of boundary layer but accelerates the mass transfer; the presence of porous medium in a higher Reynolds number-fluid reduces the skin friction which is desirable for maintaining laminarity of flow and also for reduction of heat transfer rate at the surface; the temperature distribution decreases with the thermal radiation for both PST and PHF cases. In asymptotic case, presence of thermal radiation improves thermal stability.\",\"PeriodicalId\":55961,\"journal\":{\"name\":\"Journal of Naval Architecture and Marine Engineering\",\"volume\":\"17 1\",\"pages\":\"51-66\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Naval Architecture and Marine Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v17i1.37777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v17i1.37777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Heat and mass transfer effect on a radiative second grade MHD flow in a porous medium over a stretching sheet
The present problem deals with a radiative second grade fluid flow through a porous medium over a semi infinite stretching sheet. In the present study, governing equations for the third grade fluid has been formulated. However, computation has been made for a second grade fluid as a particular case of third grade of fluid. The bounding surface is subjected to power law temperature distribution and heat flux. Confluent hypergeometric function and Runge-Kutta method of fourth order are used to solve the transformed non-linear governing equations. The physical variables such as velocity, temperature and concentration are studied in response to radiative heat transfer, electromagnetic mechanical force and porosity of the medium. The important findings of the present study are: the applied transverse magnetic field prevents the growth of boundary layer but accelerates the mass transfer; the presence of porous medium in a higher Reynolds number-fluid reduces the skin friction which is desirable for maintaining laminarity of flow and also for reduction of heat transfer rate at the surface; the temperature distribution decreases with the thermal radiation for both PST and PHF cases. In asymptotic case, presence of thermal radiation improves thermal stability.
期刊介绍:
TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.