利用区块链实现边缘智能的隐私感知和可信数据共享

IF 7.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Youyang Qu;Lichuan Ma;Wenjie Ye;Xuemeng Zhai;Shui Yu;Yunfeng Li;David Smith
{"title":"利用区块链实现边缘智能的隐私感知和可信数据共享","authors":"Youyang Qu;Lichuan Ma;Wenjie Ye;Xuemeng Zhai;Shui Yu;Yunfeng Li;David Smith","doi":"10.26599/BDMA.2023.9020012","DOIUrl":null,"url":null,"abstract":"The popularization of intelligent healthcare devices and big data analytics significantly boosts the development of Smart Healthcare Networks (SHNs). To enhance the precision of diagnosis, different participants in SHNs share health data that contain sensitive information. Therefore, the data exchange process raises privacy concerns, especially when the integration of health data from multiple sources (linkage attack) results in further leakage. Linkage attack is a type of dominant attack in the privacy domain, which can leverage various data sources for private data mining. Furthermore, adversaries launch poisoning attacks to falsify the health data, which leads to misdiagnosing or even physical damage. To protect private health data, we propose a personalized differential privacy model based on the trust levels among users. The trust is evaluated by a defined community density, while the corresponding privacy protection level is mapped to controllable randomized noise constrained by differential privacy. To avoid linkage attacks in personalized differential privacy, we design a noise correlation decoupling mechanism using a Markov stochastic process. In addition, we build the community model on a blockchain, which can mitigate the risk of poisoning attacks during differentially private data transmission over SHNs. Extensive experiments and analysis on real-world datasets have testified the proposed model, and achieved better performance compared with existing research from perspectives of privacy protection and effectiveness.","PeriodicalId":52355,"journal":{"name":"Big Data Mining and Analytics","volume":"6 4","pages":"443-464"},"PeriodicalIF":7.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8254253/10233239/10233247.pdf","citationCount":"1","resultStr":"{\"title\":\"Towards Privacy-Aware and Trustworthy Data Sharing Using Blockchain for Edge Intelligence\",\"authors\":\"Youyang Qu;Lichuan Ma;Wenjie Ye;Xuemeng Zhai;Shui Yu;Yunfeng Li;David Smith\",\"doi\":\"10.26599/BDMA.2023.9020012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularization of intelligent healthcare devices and big data analytics significantly boosts the development of Smart Healthcare Networks (SHNs). To enhance the precision of diagnosis, different participants in SHNs share health data that contain sensitive information. Therefore, the data exchange process raises privacy concerns, especially when the integration of health data from multiple sources (linkage attack) results in further leakage. Linkage attack is a type of dominant attack in the privacy domain, which can leverage various data sources for private data mining. Furthermore, adversaries launch poisoning attacks to falsify the health data, which leads to misdiagnosing or even physical damage. To protect private health data, we propose a personalized differential privacy model based on the trust levels among users. The trust is evaluated by a defined community density, while the corresponding privacy protection level is mapped to controllable randomized noise constrained by differential privacy. To avoid linkage attacks in personalized differential privacy, we design a noise correlation decoupling mechanism using a Markov stochastic process. In addition, we build the community model on a blockchain, which can mitigate the risk of poisoning attacks during differentially private data transmission over SHNs. Extensive experiments and analysis on real-world datasets have testified the proposed model, and achieved better performance compared with existing research from perspectives of privacy protection and effectiveness.\",\"PeriodicalId\":52355,\"journal\":{\"name\":\"Big Data Mining and Analytics\",\"volume\":\"6 4\",\"pages\":\"443-464\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8254253/10233239/10233247.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Mining and Analytics\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10233247/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Mining and Analytics","FirstCategoryId":"1093","ListUrlMain":"https://ieeexplore.ieee.org/document/10233247/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

摘要

智能医疗设备和大数据分析的普及大大推动了智能医疗网络(SHN)的发展。为了提高诊断的准确性,SHN的不同参与者共享包含敏感信息的健康数据。因此,数据交换过程引发了隐私问题,尤其是当来自多个来源的健康数据集成(链接攻击)导致进一步泄露时。链接攻击是隐私领域的一种主要攻击,它可以利用各种数据源进行私人数据挖掘。此外,对手发动中毒攻击以伪造健康数据,从而导致误诊甚至身体损伤。为了保护私人健康数据,我们提出了一个基于用户之间信任水平的个性化差异隐私模型。信任通过定义的社区密度来评估,而相应的隐私保护级别被映射到受差分隐私约束的可控随机噪声。为了避免个性化差分隐私中的链接攻击,我们使用马尔可夫随机过程设计了一种噪声相关解耦机制。此外,我们在区块链上建立了社区模型,可以降低SHN上差异私有数据传输过程中中毒攻击的风险。在真实世界数据集上进行的大量实验和分析验证了所提出的模型,并从隐私保护和有效性的角度与现有研究相比取得了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Privacy-Aware and Trustworthy Data Sharing Using Blockchain for Edge Intelligence
The popularization of intelligent healthcare devices and big data analytics significantly boosts the development of Smart Healthcare Networks (SHNs). To enhance the precision of diagnosis, different participants in SHNs share health data that contain sensitive information. Therefore, the data exchange process raises privacy concerns, especially when the integration of health data from multiple sources (linkage attack) results in further leakage. Linkage attack is a type of dominant attack in the privacy domain, which can leverage various data sources for private data mining. Furthermore, adversaries launch poisoning attacks to falsify the health data, which leads to misdiagnosing or even physical damage. To protect private health data, we propose a personalized differential privacy model based on the trust levels among users. The trust is evaluated by a defined community density, while the corresponding privacy protection level is mapped to controllable randomized noise constrained by differential privacy. To avoid linkage attacks in personalized differential privacy, we design a noise correlation decoupling mechanism using a Markov stochastic process. In addition, we build the community model on a blockchain, which can mitigate the risk of poisoning attacks during differentially private data transmission over SHNs. Extensive experiments and analysis on real-world datasets have testified the proposed model, and achieved better performance compared with existing research from perspectives of privacy protection and effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data Mining and Analytics
Big Data Mining and Analytics Computer Science-Computer Science Applications
CiteScore
20.90
自引率
2.20%
发文量
84
期刊介绍: Big Data Mining and Analytics, a publication by Tsinghua University Press, presents groundbreaking research in the field of big data research and its applications. This comprehensive book delves into the exploration and analysis of vast amounts of data from diverse sources to uncover hidden patterns, correlations, insights, and knowledge. Featuring the latest developments, research issues, and solutions, this book offers valuable insights into the world of big data. It provides a deep understanding of data mining techniques, data analytics, and their practical applications. Big Data Mining and Analytics has gained significant recognition and is indexed and abstracted in esteemed platforms such as ESCI, EI, Scopus, DBLP Computer Science, Google Scholar, INSPEC, CSCD, DOAJ, CNKI, and more. With its wealth of information and its ability to transform the way we perceive and utilize data, this book is a must-read for researchers, professionals, and anyone interested in the field of big data analytics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信