{"title":"具有积分-多条带-多点边界条件的序列Hilfer分数阶微分方程和包含的边值问题","authors":"Bashir Ahmad, S. Ntouyas, Fawziah M. Alotaibi","doi":"10.24193/fpt-ro.2023.1.01","DOIUrl":null,"url":null,"abstract":". We study a novel fractional model of boundary value problems in the setting of Hil-fer fractional derivative operators. Precisely, sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multi-point boundary conditions are considered. Existence and uniqueness results are established for the proposed problems by using the techniques of fixed point theory. In the single-valued case, the classical theorems due to Banach and Krasnosel’ski˘i are used, while the multi-valued case is investigated with the aid of Leray-Schauder nonlinear alternative for multi-valued maps, and Covitz and Nadler’s fixed point theorem for multi-valued contractions. The obtained results are well-illustrated by numerical examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary value problems for sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multipoint boundary conditions\",\"authors\":\"Bashir Ahmad, S. Ntouyas, Fawziah M. Alotaibi\",\"doi\":\"10.24193/fpt-ro.2023.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study a novel fractional model of boundary value problems in the setting of Hil-fer fractional derivative operators. Precisely, sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multi-point boundary conditions are considered. Existence and uniqueness results are established for the proposed problems by using the techniques of fixed point theory. In the single-valued case, the classical theorems due to Banach and Krasnosel’ski˘i are used, while the multi-valued case is investigated with the aid of Leray-Schauder nonlinear alternative for multi-valued maps, and Covitz and Nadler’s fixed point theorem for multi-valued contractions. The obtained results are well-illustrated by numerical examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24193/fpt-ro.2023.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24193/fpt-ro.2023.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boundary value problems for sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multipoint boundary conditions
. We study a novel fractional model of boundary value problems in the setting of Hil-fer fractional derivative operators. Precisely, sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multi-point boundary conditions are considered. Existence and uniqueness results are established for the proposed problems by using the techniques of fixed point theory. In the single-valued case, the classical theorems due to Banach and Krasnosel’ski˘i are used, while the multi-valued case is investigated with the aid of Leray-Schauder nonlinear alternative for multi-valued maps, and Covitz and Nadler’s fixed point theorem for multi-valued contractions. The obtained results are well-illustrated by numerical examples.