具有积分-多条带-多点边界条件的序列Hilfer分数阶微分方程和包含的边值问题

Pub Date : 2023-02-01 DOI:10.24193/fpt-ro.2023.1.01
Bashir Ahmad, S. Ntouyas, Fawziah M. Alotaibi
{"title":"具有积分-多条带-多点边界条件的序列Hilfer分数阶微分方程和包含的边值问题","authors":"Bashir Ahmad, S. Ntouyas, Fawziah M. Alotaibi","doi":"10.24193/fpt-ro.2023.1.01","DOIUrl":null,"url":null,"abstract":". We study a novel fractional model of boundary value problems in the setting of Hil-fer fractional derivative operators. Precisely, sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multi-point boundary conditions are considered. Existence and uniqueness results are established for the proposed problems by using the techniques of fixed point theory. In the single-valued case, the classical theorems due to Banach and Krasnosel’ski˘i are used, while the multi-valued case is investigated with the aid of Leray-Schauder nonlinear alternative for multi-valued maps, and Covitz and Nadler’s fixed point theorem for multi-valued contractions. The obtained results are well-illustrated by numerical examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary value problems for sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multipoint boundary conditions\",\"authors\":\"Bashir Ahmad, S. Ntouyas, Fawziah M. Alotaibi\",\"doi\":\"10.24193/fpt-ro.2023.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We study a novel fractional model of boundary value problems in the setting of Hil-fer fractional derivative operators. Precisely, sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multi-point boundary conditions are considered. Existence and uniqueness results are established for the proposed problems by using the techniques of fixed point theory. In the single-valued case, the classical theorems due to Banach and Krasnosel’ski˘i are used, while the multi-valued case is investigated with the aid of Leray-Schauder nonlinear alternative for multi-valued maps, and Covitz and Nadler’s fixed point theorem for multi-valued contractions. The obtained results are well-illustrated by numerical examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24193/fpt-ro.2023.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24193/fpt-ro.2023.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。研究了一类具有hill -fer分数阶导数算子的边值问题的分数阶模型。精确地,考虑了具有积分-多条带-多点边界条件的序列Hilfer分数阶微分方程和夹杂。利用不动点理论建立了问题的存在唯一性结果。在单值情况下,使用了Banach和Krasnosel 'ski × i的经典定理,而在多值情况下,借助于多值映射的Leray-Schauder非线性替代,以及多值收缩的Covitz和Nadler不动点定理来研究多值情况。数值算例很好地说明了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Boundary value problems for sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multipoint boundary conditions
. We study a novel fractional model of boundary value problems in the setting of Hil-fer fractional derivative operators. Precisely, sequential Hilfer fractional differential equations and inclusions with integro-multistrip-multi-point boundary conditions are considered. Existence and uniqueness results are established for the proposed problems by using the techniques of fixed point theory. In the single-valued case, the classical theorems due to Banach and Krasnosel’ski˘i are used, while the multi-valued case is investigated with the aid of Leray-Schauder nonlinear alternative for multi-valued maps, and Covitz and Nadler’s fixed point theorem for multi-valued contractions. The obtained results are well-illustrated by numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信